
Factory Pattern
Builder Pattern

514770-1
Fall 2023

10/17/2023
Kyoung Shin Park

Computer Engineering
Dankook University

Factory Method Pattern

 “Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.”

 Also known as “Virtual Constructor”.

 The “new” operator considered harmful.

 Provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of
objects that will be created.

 Factory pattern is one of the most used design pattern
in Java.

Factory Method Pattern

 java.util.Calender#getInstance()

 java.util.ResourceBundle#getBundle()

 java.text.NumberFormat#getInstance()

 java.nio.charset.Charset#forName()

 java.net.URLStreamHandlerFactory#createURLStreamHand
ler(String)

 java.util.EnumSet#of()

 javax.xml.bind.JAXBContext#createMarshaller()

Abstract Factory Pattern

 “Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.”

 A hierarchy that encapsulates many possible “platforms”,
and the construction of a suite of “products”

 Also known as “Factory of Factories”

 The “new” operator considered harmful.

 Lets you produce families of related objects without
specifying their concrete classes.

Abstract Factory Pattern

 javax.xml.parsers.DocumentBuilderFactory#newInstance()

 javax.xml.transform.TransformerFactory#newInstance()

 javax.xml.xpath.XPathFactory#newInstance()

Problem

 Problem with “new”
 “new” instantiates a concrete class, so that’s definitely an

implementation, not an interface.

 This example shows different duck classes, and we don’t know
until runtime which one we need to instantiate.

 OCP violation (not closed for modification)

 Code needs to be modified when it’s time for change or extension

 Making maintenance and updates more difficult and error-prone

Duck duck;
if (picnic) {

duck = new MallardDuck();
} else if (hunting) {

duck = new DecoyDuck();
} else if (inBathTub) {

duck = new RubberDuck();
}

Problem

Factory Pattern

Description

Pattern Factory Method, Abstract Factory

Problem Whenever creating an object using new(), it
violates principle of programming for interface rather
than implementation which eventually result in inflexible
code and difficult to change in maintenance.
Another problem is class needs to contain objects of other
classes or class hierarchies within it; this can be very easily
achieved by just using new(). This is a very hard coded
approach to create objects as this creates dependency
between the two classes.

Solution All factories encapsulate object creation.

Result Factory Pattern promotes loose coupling by eliminating the
need to bind application-specific classes into the
code. Dependency Inversion Principle

Pizza Store (HFDP Ch. 4)

 Let’s say you have a pizza shop in Objectville.

 You might end up writing some code like this..

void prepareToBoxing(Pizza pizza) {
pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

}

Pizza orderPizza() {
Pizza pizza = new Pizza();

prepareToBoxing(pizza);
return pizza;

}

 But you need more than one type of pizza

Pizza orderPizza(String type) {
Pizza pizza;

if (type.equals("cheese")) {
pizza = new CheesePizza();

} else if (type.equals("greek") {
pizza = new GreekPizza();

} else if (type.equals("pepperoni") {
pizza = new PepperoniPizza();

}

prepareToBoxing(pizza);
return pizza;

}

Pizza Store (HFDP Ch. 4)

Instantiate the
correct concrete
class based on
the type of pizza

 This code is NOT closed for modification.

Pizza orderPizza(String type) {
Pizza pizza;
if (type.equals("cheese")) {

pizza = new CheesePizza();
} else if (type.equals("greek") {

pizza = new GreekPizza();
} else if (type.equals("pepperoni") {

pizza = new PepperoniPizza();
} else if (type.equals("clam") {

pizza = new ClamPizza();
} else if (type.equals("veggie") {

pizza = new VeggiePizza();
}
prepareToBoxing(pizza);
return pizza;

}

Pizza Store (HFDP Ch. 4)

This is what
varies.

This is what
we expect to
stay the same.

Pizza Store (HFDP Ch. 4)

 Encapsulating object creation

public class SimplePizzaFactory {
public Pizza createPizza(String type) {

Pizza pizza = null;
if (type.equals("cheese")) {

pizza = new CheesePizza();
} else if (type.equals("pepperoni") {

pizza = new PepperoniPizza();
} else if (type.equals("clam") {

pizza = new ClamPizza();
} else if (type.equals("veggie") {

pizza = new VeggiePizza();
}
return pizza;

}
}

Pizza Store (HFDP Ch. 4)

 Building a SimplePizzaFactory and reworking the
PizzaStore class

public class PizzaStore {
SimplePizzaFactory factory;
public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;
}
public Pizza orderPizza(String type) {

Pizza pizza = null;
pizza = factory.createPizza(type);
prepareToBoxing(pizza);
return pizza;

}
void prepareToBoxing(Pizza pizza) {

… // 기존 코드
}

}

Pizza Store (HFDP Ch. 4)

 PizzaStore Class Diagram

Pizza is defined as an
abstract class that
can be used by
overriding methods.

Each Pizza class implements Pizza.

createPizza() method
is also implemented
as static.

Pizza Store (HFDP Ch. 4)

Simple Factory

 Simple Factory determines which object to create and
return the right object for user
 In general, it determines the object to be created according to

the string using the "if“ statement.

 The Simple Factory isn’t actually a design pattern; it’s
more of a programming idiom. But it is commonly
used.

Pizza Franchise (HFDP Ch. 4)

 As the franchiser, you want to ensure the quality of
the franchise operations. But, each franchise might
want to offer different styles of pizzas (New York,
Chicago, California).

PizzaStore

NYPizzaFactory

ChicagoPizzaFactory

You want all the
francise pizza stores
to leverage your
PizzsaStore code, so
the pizzas are prepared
in the same way.

NYPizzaFactory makes
NY style pizzas: thin
crust, tasty sauce and
just a little cheese.

ChicagoPizzaFactory
makes Chicago style
pizzas: thick crust,
rich sauce and tons of
cheese.

Pizza Franchise (HFDP Ch. 4)

 If we take out SimplePizzaFactory and create 3 different
factories, then we can just compose the PizzaStore with
the appropriate factory.

 Problem
 Since PizzaStore is separate from the pizza creation, it guarantee

the flexibility, but it may be difficult to employ their own
home grown procedures. (orderPizza process in PizzaStore)

 Different pizza stores may want different process.

NYPizzaFactory nyFactory = new NYPizzaFactory();
PizzaStore nyStore = new PizzaStore(nyFactory);
nyStore.orderPizza("veggie");

ChicagoPizzaFactory cFactory = new ChicagoPizzaFactory();
PizzaStore chicagoStore = new PizzaStore(cFactory);
chicagoStore.orderPizza("veggie");

Pizza Franchise (HFDP Ch. 4)

 A framework that ties the pizza store and the pizza
creation together, yet still allows things to remain
flexible.
 There is a way to localize all the pizza making activities to the

PizzaStore class, and yet give the franchises freedom to have
their own regional style.

 Put the createPizza() method back into PizzaStore, but this time
as an abstract method, and then create a PizzaStore subclass for
each regional style.

 We’re going to have a subclass for each regional type
(NYPizzaStore, ChicagoPizzaStore, CaliforniaPizzaStore) and each
subclass is going to make the decision about what makes up a
pizza.

Pizza Franchise (HFDP Ch. 4)

public abstract class PizzaStore {
void prepareToBoxing(Pizza pizza) {

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

}

public Pizza orderPizza(String type) {
Pizza pizza = createPizza(type);
prepareToBoxing(pizza);
return pizza;

}

// factory method
abstract Pizza createPizza(String type);

}

createPizza is back to
being a call to a
method in the
PizzaStore rather than
on a factory object.

Pizza Franchise (HFDP Ch. 4)

Pizza Franchise (HFDP Ch. 4)

public class NYPizzaStore extends PizzaStore {
Pizza createPizza(String type) {
if type.equals("cheese")) {
pizza = new NYStyleCheesePizza();

} else if (type.equals("pepperoni")) {
pizza = new NYStylePepperoniPizza();

} else if (type.equals("clam")) {
pizza = new NYStyleClamPizza();

} else if (type.equals("veggie")) {
pizza = new NYStyleVeggiePizza();

}
}

}

Pizza Franchise (HFDP Ch. 4)

public class ChicagoPizzaStore extends PizzaStore {
Pizza createPizza(String type) {
if type.equals("cheese")) {
pizza = new ChicagoStyleCheesePizza();

} else if (type.equals("pepperoni")) {
pizza = new ChicagoStylePepperoniPizza();

} else if (type.equals("clam")) {
pizza = new ChicagoStyleClamPizza();

} else if (type.equals("veggie")) {
pizza = new ChicagoStyleVeggiePizza();

}
}

}

Factory Method

 The factory method is abstract, so the subclasses are
counted on to handle object creation.

 It can separate the client code in the superclass and the
object creation code in the subclass.

 The factory method returns an object of type Product
that is typically used within methods defined in the
superclass.

 The factory method isolates the client (e.g., the code in
the superclass, like orderPizza()) from knowing what kind
of concrete Product is actually created.

abstract Product factoryMethod(String type)

Pizza Class

public abstract class Pizza {
String name;
String dough;
String sauce;
ArrayList toppings = new ArrayList();

void prepare() {
System.out.println("Preparing " + name);
System.out.println("Tossing dough…");
System.out.println("Adding sauce…");
System.out.println("Adding toppings: ");
for (int i = 0; i < toppings.size(); i++) {
System.out.println(" " + toppings.get(i));

}
}
void bake() {
System.out.println("Bake for 25 minutes at 350");

}

Pizza Class

void cut() {
System.out.println("Cutting the pizza into

diagonal slices");
}
void box() {
System.out.println("Place pizza in official

PizzaStore box");
}
public String getName() {
return name;

}
}

public class NYStyleCheesePizza extends Pizza {
public NYStyleCheesePizza() {
name = "NY Style Sauce and Cheese Pizza";
dough = "Thin Crust Dough";
sauce = "Marinara Sauce";
toppings.add("Grated Reggiano Cheese");

}
}

public class ChicagoStyleCheesePizza extends Pizza {
public ChicagoStyleCheesePizza () {
name = "Chicago Style Deep Dish Cheese Pizza";
dough = "Extra Thick Crust Dough";
sauce = "Plum Tomato Sauce";
toppings.add("Shredded Mozzarella Cheese");

}
void cut() {
System.out.println("Cutting the pizza into

square slices");
}

}

main method

public class PizzaTestDrive {
public static void main(String[] args) {
PizzaStore nyStore = new NYPizzaStore();
PizzaStore chicagoStore = new ChicagoPizzaStore();
Pizza pizza = nyStore.orderPizza("cheese");
System.out.println("Ethan ordered a "

+ pizza.getName() + "\n");
pizza = chicagoStore.orderPizza("cheese");
System.out.println("Joel ordered a "

+ pizza.getName + "\n");
}

}

Factory Method Pattern

Product classCreator class

Factory Method Pattern

Define Factory Method Pattern

 Creator
 Defines a method that needs to create an object whose actual

type is unknown. Does so using abstract method call.

 ConcreteCreator
 Subclass that overrides the abstract object-instantiation method

to create the Concrete Product.

 Product
 Interface implemented by the created product. Creator accesses

the ConcreteProduct object through this interface.

 ConcreteProduct
 Object used by the Creator (superclass) methods. Implements

the Product interface.

public class DependentPizzaStore {
public Pizza createPizza(String style, String type) {
Pizza pizza = null;
if (style.equals("NY")) {
if (type.equals("cheese")) {
pizza = new NYStyleCheesePizza();

} else if (type.equals("veggie")) {
pizza = new NYStyleVeggiePizza();

}
…

}
else if (style.equals("Chicago")) {
if (type.equals("cheese")) {
pizza = new ChicagoStyleCheesePizza();

} else if (type.equals("veggie")) {
pizza = new ChicagoStyleVeggiePizza();

}
…

} …
}

Without Factory Method Pattern?

 How to ensure each franchise is using quality
ingredients?
 You’re going to build a factory that produces and ships them

to your franchise.

 The problem is that the franchise are located in different
regions. New York uses one set of ingredients and Chicago
another.

Families of Pizza Ingredients

New York
FreshClams

ThinCrustDough

ReggianoCheese

MarinaraSauce

Chicago

FrozenClams

ThickCrustDough

MozzarellaCheese

PlumTomatoSauce

California
Camari

VeryThinCrust

GoatCheese

BruschettaSauce

Families of Pizza Ingredients

 To build the ingredient factories, let’s start by defining
an interface for the factory that is going to create all
our ingredients.

public interface PizzaIngredientFactory {
public Dough createDough();
public Sauce createSauce();
public Cheese createCheese();
public Veggies[] createVeggies();
public Pepperoni createPepperoni();
public Clams createClam();

}

Families of Pizza Ingredients

 New York Ingredient Factory

public class NYPizzaIngredientFactory implements
PizzaIngredientFactory {

public Dough createDough() {
return new ThinCrustDough();

}
public Sauce createSauce() {
return new MarinaraSauce();

}
public Cheese createCheese() {
return new ReggianoCheese();

}
public Veggies[] createVeggies() {
Veggies veggies[] = { new Garlic(), new Onion(),

new Mushroom(), new RedPepper() };
return veggies;

}

Families of Pizza Ingredients

public Pepperoni createPepperoni() {
return new SlicedPepperoni();

}
public Clams createClam() {
return new FreshClams();

}
}

 Write a new Pizza class

Families of Pizza Ingredients

public abstract class Pizza {
String name;
Dough dough;
Sauce sauce;
Veggies veggies[];
Cheese cheese;
Pepperoni pepperoni;
Clams clam;

abstract void prepare();

void bake() {
System.out.println("Bake for 25 minutes at 350");

}

Each Pizza holds a set
of ingredients that are
used in its preparation.

Families of Pizza Ingredients

 새로운 피자 클래스void cut() {
System.out.println("Cutting the pizza into

diagonal slices");
}
void box() {
System.out.println("Place pizza in official

PizzaStore box");
}
void setName(String name) {
this.name = name;

}
String getName() {
return name;

}
public String toString() {
// print the Pizza name

}
}

Families of Pizza Ingredients

 In the factory method pattern, NYCheesePizza and
ChicagoCheesePizza classes are the same, except that
they use regional ingredients.
 The pizzas are made the same (dough + sauce + cheese).

They all follow the same preparation steps; they just have
different ingredients.

 So, we really don’t need two classes for each pizza; the
ingredient factory is going to handle the regional
differences.

Families of Pizza Ingredients

 CheesePizza Class

public class CheesePizza extends Pizza {
PizzaIngredientFactory ingredientFactory;
public CheesePizza(PizzaIngredientFactory

ingredientFactory) {
this.ingredientFactory = ingredientFactory;

}
void prepare() {
System.out.println("Preparing " + name);
dough = ingredientFactory.createDough();
sauce = ingredientFactory.createSauce();
cheese = ingredientFactory.createCheese();

}
}

Families of Pizza Ingredients

 ClamPizza Class

public class ClamPizza extends Pizza {
PizzaIngredientFactory ingredientFactory;
public ClamPizza(PizzaIngredientFactory

ingredientFactory) {
this.ingredientFactory = ingredientFactory;

}
void prepare() {
System.out.println("Preparing " + name);
dough = ingredientFactory.createDough();
sauce = ingredientFactory.createSauce();
cheese = ingredientFactory.createCheese();
clam = ingredientFactory.createClam();

}
}

Families of Pizza Ingredients

public class NYPizzaStore extends PizzaStore {
protected Pizza createPizza(String item) {
Pizza pizza = null;
PizzaIngredientFactory ingredientFactory =

new NYPizzaIngredientFactory();
if (item.equals("cheese")) {
pizza = new CheesePizza(ingredientFactory);
pizza.setName("New York Style Cheese Pizza");

} else if (item.equals("veggie")) {
pizza = new VeggiePizza(ingredientFactory);
pizza.setName("New York Style Veggie Pizza");

} else if (item.equals("clam")) {
…
}
return pizza;

}
}

Abstract Factory Pattern

 Abstract Factory allows a client to use an abstract
interface to create a set of related products without
knowing about the concrete products that are actually
produced.

 In this way, the client is decoupled from any of the
specifies of the concrete products.

 Abstract Factory can be used for creating cross-platform
UI elements without coupling the client code to concrete
UI classes, while keeping all created elements consistent
with a selected operating system (Windows, Mac).
 GUIFactory interface – createButton, createCheckBox

 WindowsFactory – createButton creates Windows button &
createCheckBox creates Windows checkbox

 MacFactory – createButton creates Mac button & createCheckBox
creates Mac checkbox

Abstract Factory Pattern

Abstract Factory Pattern

 AbstractFactory
 Defines the interface that all concrete factories must implement,

which consists of a set of methods for creating products.

 ConcreteFactory1, ConreteFactory2
 Each concrete factory can product an entire set of products.

 ProductA1, ProductA2
 They are the product family of ProductA.

 ProductB1, ProductB2
 They are the product family of ProductB.

Factory Method Pattern Example

Difference between Abstract Factory and
Factory Method

 Abstract Factory uses object composition to delegate
responsibility of creating object to another class: object
creation is implemented in methods exposed in the
factory interface.

 Factory Method uses inheritance and relies on a
subclass to create object: object creation is delegated to
subclasses which implement the factory method to
create objects.

 Factory Method is just a method that can be overridden
in a subclass. Abstract Factory is an object that has
multiple factory methods on it.

Builder Pattern

 Aims to “Separate the construction of a complex object
from its representation so that the same construction
process can create different representations”.

 It is used to construct a complex object step by step
and the final step will return the object.

 The builder pattern should be used when we want to
build different immutable objects using the same object
building process.

 The only big difference between the builder pattern
and the abstract factory pattern is that builder
provides us more control over the object creation
process, and that’s it.

Builder Pattern

 java.util.Appendable

 java.lang.StringBuilder#append() [unsynchronized class]

 java.lang.StringBuffer#append() [synchronized class]

 java.nio.ByteBuffer#put() (also on CharBuffer, ShortBuffer,
IntBuffer, LongBuffer, FloatBuffer and DoubleBuffer)

 javax.swing.GroupLayout.Group@addComponent()

 Lombok’s @Builder annotation is a useful technique to
implement the builder pattern.

Problem

 Imagine a complex object that requires laborious, step-
by-step initialization of many fields and nested objects.

 Such initialization code is usually buried inside a
monstrous constructor with lots of parameters.

 What if only bun and patty are mandatory, and the rest
are optional. We need more constructors. This problem
is called the telescoping constructor problem.
 public Burger(int bun, int patty, boolean cheese, boolean

lettuce, boolean tomato, boolean bacon) { … }

 public Burger(int bun, int patty, boolean cheese, boolean
lettuce, boolean tomato) { … }

 public Burger(int bun, int patty, boolean cheese, boolean
lettuce { … }

 public Burger(int bun, int patty, boolean cheese) { … }

 public Burger(int bun, int patty) { … }

Problem

 Problem with telescoping constructor
 Making the constructor calls pretty ugly.

 Now let’s add more field in the Burger class.
 Problem! One way is to create more constructors, and another is

to lose the immutability and introduce setter methods. You
choose any of both options, and you lose something.

 The Builder pattern help you to consume additional
fields while retaining the immutability of the class.

// all ingredient
Burger burger1 = new Burger(2, 1, true, true,

true, true);
// bun, patty2, cheese
Burger burger2 = new Burger(2, 2, true);
// bun, patty, bacon
Burger burger3 = new Burger(2, 1, false, false,

false, true);

Builder Pattern

Description

Pattern Builder

Problem Imagine a complex object that requires laborious, step-by-
step initialization of many fields and nested objects. Such
initialization code is usually buried inside a monstrous
constructor with lots of parameters.
You might make the program too complex by creating a
subclass for every possible configuration of an object. Or,
The constructor with lots of parameters has its downside:
not all the parameters are needed at all times.

Solution The Builder pattern lets you construct complex objects step
by step. The Builder doesn’t allow other objects to access
the product while it’s being built.

Result OCP, SRP

Burger

public class Burger {
private int bun; // required
private int patty; // required
private boolean cheese; // optional
private boolean lettuce; // optional
private boolean tomato; // optional
private boolean bacon; // optional

public Burger(int bun, int patty, boolean
cheese, boolean lettuce, boolean tomato,
boolean bacon) { … }

public Burger(int bun, int patty, boolean
cheese, boolean lettuce, boolean tomato) { … }

public Burger(int bun, int patty, boolean
cheese, boolean lettuce) { … }
…

}
Telescoping
constructors problem

Burger

public class Burger {
private int bun; // required
private int patty; // required
private boolean cheese; // optional
private boolean lettuce; // optional
private boolean tomato; // optional
private boolean onion; // optional
private boolean bacon; // optional

public Burger(int bun, int patty, boolean
cheese, boolean lettuce, boolean tomato,
boolean onion, boolean bacon) { … }

public Burger(int bun, int patty, boolean
cheese, boolean lettuce, boolean tomato,
boolean onion) { … }
…
}

Telescoping
constructors problem

Builder Pattern

Define Builder Pattern

 Builder
 declares product construction steps that are common to all

types of builders.

 ConcreteBuilder
 provides different implementations of the construction steps.

Concrete builders may produce products that don’t follow the
common interface.

 Product
 is an resulting object. Products constructed by different builders

don’t have to belong to the same class hierarchy or interface.

 Director
 defines the order in which to call construction steps, so you can

create and reuse specific configurations of products.

Burger

 BurgerBuilder help us in building desired instance with
all required fields and a combination of optional fields.

public class Burger {
private final int bun; // required
private final int patty; // required
private final boolean cheese; // optional
private final boolean lettuce; // optional
private final boolean tomato; // optional
private final boolean bacon; // optional
private Burger(BurgerBuilder builder) {

this.bun = builder.bun;
this.patty = builder.patty;
this.cheese = builder.cheese;
this.lettuce = builder.lettuce;
this.tomato = builder.tomato;
this.bacon = builder.bacon;

}

Burger

// all getter, and no setter to provide immutability
public int getBun() {
return bun;

}
public int getPatty() {
return patty;

}
public boolean getCheese() {
return cheese;

}
public boolean getLettuce() {
return lettuce;

}
… // getTomato(), getBacon() 중간 생략
@Override
public String toString() {
…

}

Burger

// BurgerBuilder
public static class BurgerBuilder {

private final int bun; // required
private final int patty; // required
private boolean cheese; // optional
private boolean lettuce; // optional
private boolean tomato; // optional
private boolean bacon; // optional

public BurgerBuilder(int bun, int patty) {
this.bun = bun;
this.patty = patty;

}
public BurgerBuilder cheese(boolean cheese) {

this.cheese = cheese;
return this;

}
… // lettuce, tomato 중간 생략

Burger

// BurgerBuilder
public boolean bacon(boolean bacon) {

this.bacon = bacon;
return this;

}
public Burger build() {

return new Burger(this);
}

} // end of BurgerBuilder class
} // end of Burger class

Burger

public static void main(String[] args) {
Burger burger1 = new Burger.BurgerBuilder(2,1)

.cheese(true)

.lettuce(true)

.tomato(true)

.bacon(true)

.build();
System.out.println(burger1);
// bun, patty2, cheese
Burger burger2 = new Burger.BurgerBuilder(2,2)

.cheese(true)

.build(); // no lettuce, tomato, bacon
System.out.println(burger2);
// bun, patty, bacon
Burger burger3 = new Burger.BurgerBuilder(2,2)

.bacon(true)

.build(); // no cheese, lettuce, tomato
System.out.println(burger3);

