
Adapter Pattern
Façade Pattern
Iterator Pattern

514770-1
Fall 2023
11/7/2023

Kyoung Shin Park
Computer Engineering

Dankook University

Adapter Pattern

 “Convert the interface of a class into another
interface clients expect. Adapter lets classes work
together that couldn't otherwise because of
incompatible interfaces.”

 Also known as “Wrapper”

 Use the adapter pattern when you need to make two
classes work with incompatible interfaces.

Adapter Pattern

 java.util.Arrays#asList()

 java.util.Collections#list()

 java.util.Collections#enumeration()

 java.io.InputStreamReader(InputStream) (returns a
Reader)

 java.io.OutputStreamWriter(OutputStream) (returns a
Writer)

 javax.xml.bind.annotation.adapters.XmlAdapter#marshal()
and #unmarshal()

Façade Pattern

 “Provide a unified interface to a set of interfaces in a
subsystem. Façade defines a higher-level interface that
makes the subsystem easier to use.”

 Provide a simple interface to a library, a framework, or
one or more complex subsystems.

Facade Pattern

 javax.faces.context.FacesContext, it internally uses among
others the abstract/interface types LifeCycle,
ViewHandler, NavigationHandler and many more without
that the enduser has to worry about it (which are
however overrideable by injection).

 javax.faces.context.ExternalContext, which internally uses
ServletContext, HttpSession, HttpServletRequest,
HttpServletResponse, etc.

Iterator Pattern

 “Provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.”

 Also known as Cursor

 Java iterator design pattern is commonly used in
collection framework to traverse through collection
objects.

 The C++ and Java standard library abstraction that
makes it possible to decouple collection classes and
algorithms.

Iterator Pattern

 All implementations of java.util.Iterator

 All implementations of java.util.Enumeration

Adapter Pattern

 Object wrapping
 Adapter patterns works as a bridge between two incompatible

interfaces.

 This pattern involves a single class which is responsible to join
functionalities of independent or incompatible interfaces.

 Example: Electric power plug
 Different plug (European, US) can be converted using an

adapter.

Adapter Pattern

 Object Oriented Adapter
 OO adapters play the same role as their real world counterparts.

 They take an interface and adapter it to one that a client is
expecting.

Adapter Pattern

Description

Pattern Adapter

Problem Need to make two classes work with incompatible
interfaces

Solution Create an adapter that converts the interface of
one object so that another object can understand
it.

Result The adapter helps to handle the changes in the
API being called and the client code without
changes on either side.

OOP Adapter

 Say you’ve got an existing software system that you
need to work a new vendor class library.

 But, the new vendor designed their interfaces
differently than the last vendor.

OOP Adapter

 You don’t want to solve the problem by changing
your existing code (and you can’t change the vendor’s
code). So what do you do?
 You can write a class that adapts the new vendor interface

into the one you’re expecting.

OOP Adapter

 The adapter acts as the middleman by receiving
requests from the client and converting them into
requests that make sense on the vendor classes.

Duck Magnets (HFDP Ch. 7)

 Duck (HFDP Ch. 1)

public interface Duck {
public void quack();
public void fly();

}

public class MallardDuck implements Duck {
public void quack() {

System.out.println("Quack");
}
public void fly() {

System.out.println("I'm flying");
}

}

Duck Magnets (HFDP Ch. 7)

public interface Turkey {
public void gobble();
public void fly();

}

public class WildTurkey implements Turkey {
public void gobble() {

System.out.println("Gobble gobble");
}
public void fly() {

System.out.println("I'm flying a short
distance");

}
}

Duck Magnets (HFDP Ch. 7)

 Let’s say you’re short on Duck objects and you’d like to
use some Turkey objects in their place.

 So, let’s write an Adapter

public class TurkeyAdapter implements Duck {
Turkey turkey;
public TurkeyAdapter(Turkey turkey) {

this.turkey = turkey;
}
public void quack() {

turkey.gobble();
}
public void fly() {

for (int i = 0; i < 5; i++) {
turkey.fly();

}
}

}

Duck Magnets (HFDP Ch. 7)

Duck Magnets (HFDP Ch. 7)
public class DuckTestDrive {

public static void main(String[] args) {
MallardDuck duck = new MallardDuck();
WildTurkey turkey = new WildTurkey();
Duck turkeyAdapter = new TurkeyAdapter(turkey);

System.out.println("The Turkey says…");
turkey.gobble();
turkey.fly();
System.out.println("\nThe Duck says…");
testDuck(duck);
System.out.println("\nThe TurkeyAdapter says…");
testDuck(turkeyAdapter);

}
static void testDuck(Duck duck) {

duck.quack();
duck.fly();

}
}

Adapter Pattern

Client

Adapter

Adaptee

Adaptee
interface

Target
interface

Adapter Pattern

 Class Adapter
 You need multiple inheritance to implement it, which isn’t

possible in Java.

 Class adapter subclasses the Target and the Adaptee.

Adapter Pattern

 Object Adapter
 Object adapter uses composition to pass requests to an Adaptee.

Define Adapeter Pattern

 Adaptee
 An object that doesn’t support the desired interface.

 Target
 The interface you want the Adaptee to support

 Adapter
 The class that makes the Adaptee appear to support the

Target interface. Class Adapters use subclass. Object Adapters
use composition.

Adapting Enumeration to Iterator (HFDP
Ch. 7)

 Enumeration Example

import java.util.*;

public class EnumerationExample {
public static void main(String[] args) {
Vector v = new Vector();
for (int i = 0; i < 10; i++) {

v.add(i);
}
Enumeration e = v.elements();
while (e.hasMoreElements()) {

System.out.println("" + e.nextElement());
}

}
}

Adapting Enumeration to Iterator (HFDP
Ch. 7)

 Iterator Example

import java.util.*;

public class IteratorExample {
public static void main(String[] args) {
Vector v = new Vector();
for (int i = 0; i < 10; i++) {

v.add(i);
}
Iterator it = v.iterator();
while (it.hasNext()) {

System.out.println("" + it.next());
}

}
}

Adapting Enumeration to Iterator (HFDP
Ch. 7)

 Enumeration  Iterator

Adapting Enumeration to Iterator (HFDP
Ch. 7)

 Iterator – Target interface

 Enumeration – Adaptee interface

 remove() default method

Adapting Enumeration to Iterator (HFDP
Ch. 7)

Adapter
remove() throws an exception

Target

Adaptee

Adapting Enumeration to Iterator (HFDP
Ch. 7)

public class EnumerationIterator implements Iterator {
Enumeration<?> enumeration;
public EnumerationIterator(Enumeration<?> enmt) {
this.enumeration = enmt;

}
public boolean hasNext() {
return enumeration.hasMoreElements();

}
public Object next() {
return enumeration.nextElement();

}
public void remove() {
throw new UnsupportedOperationException();

}
}

public class EnumerationIteratorTest {

public static void main(String[] args) {
Vector v = new Vector();
for (int i = 0; i < 10; i++) {
v.add(i);

}
Enumeration e = v.elements();
EnumerationIterator it = new EnumerationIterator(e);
while (it.hasNext()) {
System.out.println("" + it.next());

}
}

}

Arrays Adapter

 Arrays.asList() to convert array to immutable list in
Java
 The converted list is an ArrayAdapter and has the

characteristics of Array.

 This converted list cannot use add(), remove() method
because it is immutable.

 This converted list can use set(), get(), contains() method, but
set() also changes the data in the original array.

Arrays Adapter

import java.util.Arrays;
import java.util.List;

public class ArraysAdapter {
public static void main(String[] args) {

String[] cities = { "Seoul", "Incheon",
"Busan", "Sejong" };

List<String> cityList =
Arrays.asList(cities);

System.out.printf("cities.length = %d\n",
cities.length);

System.out.printf("cityList.size = %d\n",
cityList.size());

Arrays Adapter

cityList.set(0, "Suwon");
System.out.println("\mPrint out cities");
for (String s : cities) {
System.out.println(s);

}
System.out.println("\mPrint out cityList");
for (String s : cityList) {
System.out.println(s);

}
}

}

Adapter vs Decorator

Pattern Intent

Decorator Doesn’t alter the interface, but dynamically adds
responsibility to the interface by wrapping the original
code.
For example, adding sugar in a coffee.

Adapter Converts one interface to another so that it matches
what the client is expecting.
For example, electrical adapter.

Facade Provides a simplified interface.
Façade not only simplifies an interface, it decouples a
client from a subsystem of components.

Home Theater

 Building your own home theater
 You’ve assembled a system complete with a DVD player, a

projector, an automated screen, surround sound and even a
popcorn popper.

 Watching a movie(the hard way)
 Turn on the popcorn popper, Start the popper popping

 Dim the lights, Put the screen down

 Turn the projector on, Set the projector input to DVD

 Put the projector on wide-screen mode

 Turn the sound amplifier on, Set the amplifier to DVD input

 Set the amplifier to surround sound

 Set the amplifier volume to medium (5)

 Turn the DVD player on

 Start the DVD player playing

Home Theater

 Watching a movie code

popper.on();
popper.pop();
lights.dim(10);
screen.down();
projector.on();
projector.setInput(dvd);
projector.wideScreenMode();
amp.on();
amp.setDvd(dvd);
amp.setSurroundSound();
amp.setVolume(5);
dvd.on();
dvd.play(movie);

Home Theater using Façade Pattern

 You can take a complex subsystem and make it easier
to use by implementing a Façade class that provides
one, more reasonable interface.

 If you need the power of the complex subsystem, it’s
still there for you to use, but if all you need is a
straightforward interface, the Façade is there for you.

Home Theater using Façade Pattern

 Create a Façade class for the home theater system,
HomeTheaterFacade
 which exposes a few simple methods such as watchMovie()

 The Façade class treats the home theater components
as a subsystem, and calls on the subsystem to
implement its watchMovie() method.

 The client code now calls methods on
HomeTheaterFacade, not on the subsystem.

 The Façade still leaves the subsystem accessible to
used directly.
 If you need the advanced functionality of the subsystem

classes, they are available for your use.

public class HomeTheaterFacade {
private Amplifier amp;
private Tuner tuner;
private DvdPlayer dvd;
private CdPlayer cd;
private Projector projector;
private TheaterLights lights;
private Screen screen;
private PopcornPopper popper;

public HomeTheaterFacade(Amplifier a, Tuner t,
DvdPlayer d, CdPlayer c, Projector p,
Screen s, TheaterLights l, PopcornPopper pp) {

this.amp = a; this.tuner = t; this.dvd = d;
this.cd = c; this.projector = p; this.lights = l;
this.screen = s; this.popper = pp;

}

public void watchMovie(String movie) {
System.out.println("Get ready to watch a movie...");
popper.on();
popper.pop();
lights.dim(10);
screen.down();
projector.on();
projector.wideScreenMode();
amp.on();
amp.setDvd(dvd);
amp.setVolume(5);
dvd.on();
dvd.play(movie);

}

Home Theater using Façade Pattern

public void endMovie() {
System.out.println("Shutting movie theater down..");
popper.off();
lights.on();
screen.up();
projector.off();
amp.off();
dvd.stop();
dvd.eject();
dvd.off();

}
… // other methods
}

Home Theater using Façade Pattern

public void listenToRadio(double frequency) {
System.out.println("Tuning in the airwaves...");
tuner.on();
tuner.setFrequency(frequency);
amp.on();
amp.setVolume(5);
amp.setTuner(tuner);

}
public void endRadio() {

System.out.println("Shutting down the
tuner...");

tuner.off();
amp.off();

}
}

Home Theater using Façade Pattern

public class HomeTheaterTestDrive {
public static void main(String[] args) {
// create component object
HomeTheaterFacade homeTheater
= new HomeTheaterFacade(amp, tuner, dvd, cd,

projector, screen, lights, popper);
homeTheater.watchMovie("Raiders of the Lost Ark");
homeTheater.endMovie();

}
}

Home Theater using Façade Pattern

Façade Pattern

Description

Name Façade

Problem Clients that access a complex subsystem directly
refer to (depend on) many different objects
having different interfaces (tight coupling), which
makes the clients hard to implement, change, test,
and reuse.

Solution Provide a simple interface to a complex subsystem

Result Minimize the dependencies on a subsystem.
Façade follows the principle of least knowledge
(loose coupling).

Façade Pattern

Define Façade Pattern

 Façade
 Provides a simple interface to a complex subsystem.

 Subsystem Classes
 Classes that comprise one or more complex subsystems.

Iterator Pattern

 An aggregate object (such as Array, ArrayList) should
give you a way to access its elements without
exposing its internal structure.

 Array

 ArrayList

for (int i = 0; i < arr.length; i++) {
// do something with arr[i]
System.out.println(arr[i]);

}

for (int i = 0; i < list.size(); i++) {
// do something with list.get(i)
System.out.println(list.get(i));

}

Iterator Pattern

Define Iterator Pattern

 Iterator
 An interface to access or traverse the elements collection.

Provide methods which concrete iterators must implement.

 ConcreteIterator
 Implements the Iterator interface methods. It can also keep

track of the current position in the traversal of the aggregate
collection.

 Aggregate
 It is typically a collection interface which defines a method

that can create an Iterator object.

 ConcreteAggregate
 It implements the Aggregate interface and its specific method

returns an instance of ConcreteIterator.

Iterator Pattern

Description

Name Iterator

Problem Need to “abstract” the traversal of different data
structures so that algorithms can be defined that
are capable of interfacing with each transparently

Solution Put the iterator object that defines a standard
traversal protocol

Result Minimize the code change

Iterator

 When you have a set of elements in a collection, you
want to sequentially access those elements.

 A good example of an Iterator is a TV remote, which has
the “next” and “previous” buttons to surf channels.

 If you want to get the average in the list, you need to
access each element to calculate sum and average.

 If you want to find a student in the list using ID, you
must compare the student’s ID for each element.

 Collection classes have different data structures, which
has different methods to access the element.

 When the collection changes, the code that handles
each element must also change.

Java Iterator

Method Description

hasNext() Check if there are more elements (return true
or false)

next() Get the next element. (return an object)

remove() Remove the returned element

Method Description

iterator() Return a reference to the iterator (Iterator
datatype)

 Iterator<E> interface is used for iterating (looping)
collection classes such as HashMap, ArrayList, LinkedList.

 Iterator<E> method

 Iterable<E> method

Java Iterator

ArrayList<String> cities = new ArrayList<>();

cities.add("Seoul");

cities.add("Tokyo");

cities.add("Washington, D.C.");

Iterator<String> iter = cities.iterator();

while (iter.hasNext()) {

String s = iter.next();

System.out.println(s);

}

for (Iterator<String> iter = cities.iterator(); iter.hasNext();) {

String s = iter.next();

System.out.println(s);

}

for (String city : cities) { // foreach

System.out.println(city);

}

Remove Objects from Collection while
Iterating

 ArrayList provides remove(int index) or remove(Object
obj). However, the remove() method is used only
when the ArrayList is not iterated.

List<String> list = new ArrayList<>(Arrays.asList("a","b",c","d"));

for (int i = 0; i < list.size(); i++) {

list.remove(i); // when element is deleted, the list size

//decreases and the indexes of other elements change

}

for (String s : list) {

list.remove(s); // ConcurrentModificationException

}

Iterator<String> it = list.iterator();

while (it.hasNext()) {

String s = it.next(); // next() must be called before remove()

it.remove();

}

Generic

 When you use non-generic ArrayList, it stores the
Object datatype.

ArrayList list = new ArrayList();

list.add("Seoul");

list.add("Tokyo");

list.add("Washington, D.C.");

List.add(new Integer(10)); // can add Integer to String ArrayList

Iterator it = list.iterator();

while (it.hasNext()) {

String s = (String)it.next(); // ClassCastException:

java.lang.Integer cannot be cast to java.lang.String

System.out.println(s);

}

Generic

 Creating a Generic class or interface
 Use generic type to class or interface

 Declaration generic class reference

public class MyClass<T> {
T val;
void set(T a) {

val = a;
}
T get() {

return val;
}

}

Generic class MyClass, with Type
parameter Tval’s

data
type
is T

MyClass<String> s;
List<Integer> li;
Vector<String> vs;

Generic

 Type parameter
 One uppercase character between ‘<‘ and ‘>’ is used as a

type parameter.

 Popular type parameters

 E : means Element, and is often used for elements in a collection

 T : means Type

 V : means Value

 K : means Key

 Cannot create object of type indicated by type parameter

 T a = new T(); // error!!

 T[] a = new T[3]; // error!!

 T[] a = (T[]) new Object[3]; // OK

 Type parameters instantiated to actual types later.

 Any character can be used as a type parameter.

Generic

 Specialization to MyClass<String>

public class MyClass<String> {
String val;
void set(String a) {

val = a;
}
String get() {

return val;
}

}

public class MyClass<T> {
T val;
void set(T a) { val = a; }
T get() { return val; }

}

T is String

Generic

 Specialization
 Create an object by assigning a specific type to a generic type

class, done by the compiler

 Error when adding other types of object

 Primitive datatype (e.g., int, double, etc) cannot be used for
type parameters

// Specify String to generic type T
MyClass<String> s = new MyClass<String>();
s.set("hello");
System.out.println(s.get()); // "hello"
// Specify Integer to generic type T
MyClass<Integer> n = new MyClass<Integer>();
n.set(5);
System.out.println(n.get()); // 5
n.set("hello"); // compile error
MyClass<int> v = new MyClass<int>(); // compile error (int
cannot be used)

Inner Class

 Inner class is a class defined inside of another class.
 Can be created as static or non-static

 Inner class (and their public fields) are hidden from other classes
(encapsulated).

 Inner objects can access/modify the fields of the outer object (if
the inner class is not static).

 Inner class can be declared in a method or within a entire
enclosing class.

public class LinkedList<E> extends AbstractSequentialList<E> {
private static class ListNode { .. }
private class ListIterator implements Iterator<E> {
…
}
public Iterator iterator() { return new ListIterator(); }

}

Inner Class

 Inner class
 When a method of your inner class has the same name as a

method in your outer class, and you want to call the outer
class’ method from your inner class

 Java won’t let you compile because it can’t tell what method you
want to call

 You need to refer to the method of the outer class explicitly

 OuterClass.this.outerMethod();

 Public inner classes are visible outside of the outer class

 OuterClass.PublicInnerClass inner = outer.new PublicInnerClass();

 You can also make static inner class

 If the inner class does not access the outer object

 Static inner class cannot use instance fields of the outer class

 OuterClass.StaticInnerClass si = new OuterClass.StaticInnerClass();

