
MVC Pattern

514770-1
Fall 2023
12/5/2023

Kyoung Shin Park
Computer Engineering

Dankook University

MVC(Model-View-Controller) Pattern

 The Model-View-Controller (MVC) design pattern assigns
objects in an application one of three roles: model, view,
or controller.

 Separate business logic (Controller) and data
representation (Model), and presentation part (View)

 Eliminate Model and View dependencies
 Model can change regardless of View

 View can also change regardless of model

 MVC is originally originated from the Smalltalk language,
but is currently widely used in GUI applications and in
web frameworks.

 MVC pattern is one of the most-used patterns from J2EE
design pattern category.

MVC Pattern

Description

Pattern MVC (Model-View-Controller)

Problem Data and view code are mixed

Solution Separate data and view and add a controller to
link them

Result Loose coupling, Reusability

Design

Role Design

Model Model is the part or logic that manages the
application’s data (there is only one model in
the view)

View View manages the part displayed on the
screen that the user sees (there can be
multiple views for the model)

Controller Controller handles user input and supports
interaction between Model and View (there
may be more than one)

MVC Pattern

 Passive Model
 Only the controller manipulates the model.

 The controller modifies the model as the user types or makes
input.

 After the model has been modified, the controller asks to update
the view.

 The view receives the modified model data (after request) and
updates it in the screen.

Controller

View Model

update

notify

user action

update

 Active Model
 Controllers aren't the only way to modify the model.

 The model can request to update the view.

 The model provides the subject interface and registers as an
observer in the view.

 The view receives data from model (after request) and updates it
in the screen.

MVC Pattern

Controller

View Model

update

notify

user action

update

get changed state
(observer pattern)

MVC Pattern History

 Microsoft MFC
 Use the Document/View structure

 Document represents Model, Controller is processed by
Windows messaging system.

 Java Swing
 Use Model/Delegate structure

 Delegate can be though of as Controller + View.

 Java Swing components consist of Model and Delegate.

 Each component provides a default model and delegate
providing the basic functions

 Model or delegate can be changed using setModel() and setUI()
methods.

MVC Pattern (MFC)

Document(Model) View(View & Controller)

MVC Pattern (Swing)

User

ControllerView

Model

change/request

change/
transfer

notify
register

manipulatesee

return

Model

Delegate

MVC Pattern (Web)

 Quotes from https://opentutorials.org/course/697/3828
1. User accesses the website. (use)

2. The Controller calls the Model to service the web page
requested by the user. (manipulate)

3. The Model controls a data source such as a database or file
and then returns the results.

4. The Controller reflects the results returned by the Model to
the View. (update)

5. The View reflecting the data is shown to the user. (see)

MVC Pattern (Model1)

Web Container

JSP JavaBean

Web
browser

request

response Model
View &
Controller

 Model2 is an adaptation of MVC to the Web

MVC Pattern (Model2)

Web Container

JSP

JavaBean
Web
browser

request

response
View

Model

Servlet
Controller

MVC Pattern (HFDP Ch12)

1. User interact with the View

2. The Controller asks the Model to change its state.

3. The Controller may also ask the View to change.

4. The Model notifies the View when its state has
changed.

5. The View asks the Model for state.

MVC Pattern (HFDP Ch12)

User

ControllerView

Model

change/request

display update

state
change

see manipulate

manipulate

MVC Pattern (Model2 - HFDP Ch12)

Example

 https://www.tutorialspoint.com/design_pattern/mvc_pat
tern.htm

Example

public class Student {
private String rollNo;
private String name;
public String getRollNo() {

return rollNo;
}
public void setRollNo(String rollNo) {

this.rollNo = rollNo;
}
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}

}

Example

public class StudentView {
public void printStudentDetails(String studentName,

String studentRollNo){
System.out.println("Student: ");
System.out.println("Name: " + studentName);
System.out.println("Roll No: " + studentRollNo);

}
}

Example

public class StudentController {
private Student model;
private StudentView view;
public StudentController(Student model,

StudentView view) {
this.model = model;
this.view = view;

}
public void setStudentName(String name) {
model.setName(name);

}
public String getStudentName() {
return model.getName();

}

Example

public void setStudentRollNo(String rollNo) {
model.setRollNo(rollNo);

}
public String getStudentRollNo() {
return model.getRollNo();

}
public void updateView() {
view.printStudentDetails(model.getName(),

model.getRollNo());
}

}

Example

public class MVCPatternDemo {
public static void main(String[] args) {

// fetch student record based on his roll no
// from the database
Student model = retriveStudentFromDatabase();

// Create a view : to write student details on
// console
StudentView view = new StudentView();
StudentController controller

= new StudentController(model, view);
controller.updateView();
//update model data
controller.setStudentName("John");
controller.updateView();

}

Example

private static Student retriveStudentFromDatabase() {
Student student = new Student();
student.setName("Robert");
student.setRollNo("10");
return student;

}
}

MVC Pattern Advantage and Disadvantage

 Advantage
 Object-oriented structure that minimizes information sharing

between classes

 Model and View don’t have to know each other well.

 Multiple Views can be supported in the same model

 Disadvantage
 May be inefficient

 When the View is notified that it should be updated, the View
receives information from the Model and updates it.

 It is more efficient for the Model to directly communicate what
the View needs, but it is not object-oriented.

 The role of the Controller can be too large.

