
Java Programming II

Lab1

514770-1
Fall 2024
9/11/2024

Kyoung Shin Park
Computer Engineering

Dankook University



DRY (Don’t Repeat Yourself) Principle

 In the book “The Pragmatic Programmer”, DRY is defined 
as “Every piece of knowledge must have a single, 
unambiguous, authoritative representation within a 
system." 

 Knowledge – a precise functionality or an algorithm

Violations of DRY
 WET, "We enjoy typing," or “Waste everyone’s time”. 

How to Achieve DRY

 To avoid violating the DRY principle, divide your system into 
pieces. Divide your code and logic into smaller reusable units 
and use that code by calling it where you want. 

DRY Benefits

 Less code is good: It saves time and effort, is easy to maintain, 
and also reduces the chances of bugs.



KISS (Keep It Simple Stupid) Principle

 “Keep It Simple Stupid”, “Keep It Short and Simple”

 The KISS principle is descriptive to keep the code 
simple and clear, making it easy to understand. 

Violations of KISS
 "Why they have written these unnecessary lines and conditions 

when we could do the same thing in just 2-3 lines?"

How to Achieve KISS

 To avoid violating the KISS principle, try to write simple code. 
Whenever you find lengthy code, divide that into multiple 
methods — refactor.

 KISS Benefits

 If the code is written simply, then there will not be any difficulty 
in understanding that code, and also will be easy to modify.



YAGNI (You Aren’t Gonna Need It) Principle

 YAGNI says “don’t implement something until it is 
necessary.” YAGNI tells us to cut off any unnecessary part 
while KISS advises to make the rest as simple as possible.

Violations of YAGNI
 “over engineering“ - a feature for every possible case, functions 

with a lot of input parameters, multiple if-else branches, rich and 
detailed interfaces, all those could be a smell of over engineering. 

How to Achieve YAGNI

 Always implement things when you actually need them, never 
when you just foresee that you need them.

 YAGNI Benefits

 Software developers don’t have enough information to make the 
call on extra features, the time spent could be used elsewhere 
more productively. Extra features mean extra development time, 
testing time, documentation time, code review time.



SOLID Principle

 Single Responsibility Principle
 “A class should have one, and only one, reason to change.“

Open/Closed Principle

 “Software entities (e.g. classes, modules, functions, etc) should be 
open for extension, but closed for modification.” 

 Liskov Substitution Principle
 “Objects in a program should be replaceable with instances of 

their subtypes without altering the correctness of that program.”

 Interface Segregation Principle
 “Clients should not be forced to depend upon interfaces that they 

do not use.” Reduce fat interfaces into multiple smaller and more 
specific client specific interfaces. 

Dependency Inversion Principle
 One should depend on abstractions (interfaces and abstract 

classes) instead of concrete implementations (classes).



Lab1

Given a LibraryItem and Library program that reports 
a list of library items, rewrite this program based on 
SOLID principles.



Lab1

 LibraryItem class will be split into multiple classes, 
each with SRP

 LibraryItem class handles item basic data

 CheckoutManager class manages the checkout status of 
LibraryItem

 ReportGenerator interface handles the report generation for 
LibraryItem



Lab1

 LibraryItem class will be refactored into a base class, 
with specific subclasses for each media type (Book, CD, 
DVD, Ebook), based on OCP, allowing the easy addition 
of new types of media without altering existing code.

 Book class

 CD class

 DVD class

 Ebook class



Lab1

 By applying LSP, each subclass of LibraryItem (e.g., 
Book, CD, DVD, Ebook) will be designed so that it can 
be substituted for the LibraryItem base class without 
altering the behavior of the program.



Lab1

 It will be refactored to define separate interfaces for 
different types of operations (ISP), ensuring that classes 
only implement the methods they need, in order to 
provide focused interfaces that prevent classes from 
implementing unnecessary methods. 

 Downloadable interface

 Streamable interface

 ReportGenerator interface



Lab1

 By applying DIP, Library class will no longer depend 
directly on the concrete class. Instead, it will depend on 
an abstract interface or base class. 



Submit to e-learning

Add your code (e.g., one example from SOLID principles) 
in the Lab1 assignment. (yourcode 없을 시 -1)

 Submit the Lab1 assignment (including the report) to e-
learning (due by 9/18).


