
Object Oriented Programming

514770-1
Fall 2024
9/11/2024

Kyoung Shin Park
Computer Engineering

Dankook University

Software Crisis

 SW Crisis
 The term “software crisis” was coined by Fridrich L. Bauer at

the first NATO Software Engineering Conference in 1968.

 The causes of the software crisis is related to

 the overall complexity of the software development process

 and the relatively immaturity of software engineering.

 The crisis manifested itself in several ways

 Projects running over-budget

 Projects running over-time

 Software was very inefficient

 Software was of low quality

 Software often did not meet requirements

 Projects were unmanageable and code difficult to maintain

 Software was never delivered

Software Quality

 Comparison with Architecture
 Assuming you are building a house, how do you measure the

quality?

 What if one room came out less than you planned?

 This is a significant design flaw.

 Even if you made everything according to the design,

 What if you can’t meet the moving-in date?

 What if the cost is more than your planned budget?

 Design compliance is important, but delivery and cost are also
important

Software Quality

 Software Quality
 Quality problems fail to solve the set of requirements with the

given amount of time with given amount of efforts

 Time

 Should not exceed the time limit

 Effort

 Measured in man-month

 Same as time and cost

 Requirements

 Functions that the users want

 Not what the developers want

Software Severity

 As software becomes larger, the crisis becomes more
serious
 Assuming a large enterprise program as 10,000,000 LOC

 It’s about 200,000 pages where 1 page contains 50 lines

 It’s about 700 books where 1 book contains 300 pages

 The development cost is 300 billion won if 1 LOC costs 30,000 won

 This cost including requirement analysis, design, testing,

documentation, and inspection

 Problems in large-scale software development
 Problems of collaboration

 The importance of design

 Divide, develop, and integrate large-scale software development

 Problems of requirement

 Requirements continue to grow

Software Severity

 The severity of the software error
 There is a tendency not to value the severity of the software

error

 Software errors may threaten human life in medical and
military fields

 Software errors may cause financial losses in bank and
financial sectors

 Accident of 2016 Tesla autonomous driving

https://www.mk.co.kr/news/special-edition/view/2016/07/473465/

https://www.mk.co.kr/news/special-edition/view/2016/07/473465/

Good Software?

 User-centered design is a key concept in software
development
 Functionality, Efficiency, Maintainability, Reusability,

Readability, etc are important

 It is important to implement all the functions that users need,
but it should be easy to maintain, easy to reuse, and easy
to read

 Maintenance costs will be increased if the software is not made
easy to read

 Good Software
 Easy to edit code because there is no code duplication and

easy to understand

 Convenient for others to take

Object-Oriented Programming

 Paradigm changes as a way to solve the SW crisis.
 Changes towards faster and better to reduce software

development time and cost  Paradigm shift to OOP

 Must understand the characteristics of object oriented
programming
 What is different compared to non-OOP?

 Understanding what improves programming

 Understanding inheritance as a way to reuse common parts

 Distinguish when to use and when not to use

Object-Oriented Programming

 What is Object-oriented programming?
 OOP is one of the programming styles

 OOP improves the problems of procedural programming (or
structured programming)

 OOP consists of two elements (data and code)

 Data

 Value used for I/O and used while the code is executed

 Code

 Commands run by the computer

 Use data to solve problems and produce results

Procedural Programming

 Problems of procedural programming
 Separate procedures and data

 Example: Gasoline car

 The move() expresses the process of moving a car. The fuel
enters the car engine and burns it to move the car. The energy
generated in this process is transferred to the wheels to move
the car.

 You only need to call the move() when moving the car.

 The move() needs data called fuel, but it cannot be put in the
function.

 The solution is passed as a parameter.

Problem with Procedural Programming

void move(Car car, double gas) {

// Use the given gas

// burn the gas in the engine

// transmit power to the wheel

// to move the car

...
}

double gasoline = 20.0;
move(A, gasoline);

Problem with Procedural Programming

 What if there are two cars?

double gasolineA = 20.0;
double gasolineB = 20.0;
move(A, gasolineA);
move(B, gasolineB);

Procedural Programming

Object-Oriented Programming

 In object-oriented programming, data and procedures
are grouped together using classes, and treated as a
single data type.

class Car {
double gasoline;
void move() {

…
}

}
Car carA = new Car();
Car carB = new Car();
carA.move();
carB.move();

Object-Oriented Programming

 The advantage of OOP is the reusability and readability of
code.

Object Oriented Programming

OOP Concepts

 Object – objects have states and behaviors

 Class – defines the grouping of data and code, the
“type” of an object

 Instance – specific allocation of a class

 Abstraction – hide the internal implementation of the
feature, and only show the functionality to the user

 Encapsulation – keep implementation private and
separate from interface

 Inheritance – hierarchical organization, code reusability,
customize or extend behaviors

 Polymorphism – process objects differently based on
their data type, using same interface

Abstraction

 Abstraction
 Hide the underlying complexity of data

 Help avoid repetitive code

 Present only the signature of internal functionality

 Give flexibility to programmers to change the implementation
of the abstract behavior

 Partial abstraction (0~100%) can be achieved with abstract
classes

 Total abstraction (100%) can be achieved with interfaces

Encapsulation

 Encapsulation
 Restrict direct access to data members (fields) of a class

 Fields are set to private

 Each field has a getter and setter method

 Getter methods return the field

 Setter methods let us change the value of the field

Inheritance

 Inheritance
 A class (child class) can extend another class (parent class) by

inheriting its features

 Implement the DRY (Don’t Repeat Yourself) programming
principle

 Improves code reusability

 Multilevel inheritance is allowed in Java (a child class can have
its own child class as well)

 Multiple inheritances are not allowed in Java (a class can’t
extend more than one class)

Polymorphism

 Polymorphism
 Polymorphism means existing in many forms

 It means objects of different types can be accessed through
the same interface. Each type can provide its own,
independent implementation of this interface.

 All Java objects can be considered polymorphic (at the
minimum, they are of their own type and instances of the
Object class)

 Polymorphism could be static and dynamic.

 Example of static polymorphism in Java is method overloading.

 Example of dynamic polymorphism in Java is method
overriding

UML Class Diagram

 Divide into three areas(class name, member fields,
member methods)

UML Class Diagram

 Association
 A and B class are associated with each other.

 Aggregation and Composition are subsets of Association, i.e.,
specific cases of Association.

 Aggregation
 Aggregation implies a relationship where the child can exist

independently of the parent.

 Composition
 Composition implies a relationship where the child cannot exist

independent of the parent.

 When A is deleted, then B is also deleted as a result.

UML Class Diagram

 Association

 Aggregation

 Composition

public class A { // A uses B
void test(B b) { }

}

public class A { // When A dies, B may live on
private B b;
A(B b) { this.b = b; }

}

public class A { // When A dies, so does B
private B b = new B();

}

UML Sequence Diagram

 Sequence Diagram – interaction diagram that details how
operations are carried out (the order of the interaction)

Inheritance

Inheritance

 Inheritance - extend, specialization

Specialization
Refinement

Generalization

Inheritance

 A constructor cannot be inherited in Java.

String name

Parent (String n)

String getName()

void setName(String n)

String name

int value
Child(String n, int v)

String getName()

void setName(String n)

int getValue()

void setValue(int v)

Parent’s memory Child’s memory

Parent(String n)

 You can store child object in parent reference (upcasting)

 Then, you can only access the parent members but it’s
not possible to access the child members.

Inheritance

derived base
String name

int value

Child(String n, int v)

String getName()

void setName(String n)

int getValue()

void setValue(int v)

Parent(String n)

Parent base;
Child derived = new Child("park", 2020);
base = derived; // upcasting

Inheritance

 Downcasting cannot be done implicitly.

Parent base2 = derived;
Child derived2 = base2; // compile error

base2 derived2

Error occurs because
it is unable to fill
empty area in Java

 Downcasting means typecasting of a parent object to a
child object. However, the original object must be a child.

 instanceof
 If the left reference is the right class (or subclass) object, then it

returns true, otherwise it returns false.

 If there is an inheritance relationship, the child class object is also
identified as an object of the parent class.

Inheritance

Child derived2 = (Child)base2; // downcasting
System.out.println(derived2.getValue());
Parent base3 = new Parent("park");
Child derived3 = (Child)base3; // error

if (derived2 instanceof Child) // true
if (derived2 instanceof Parent) // true

Method Overloading

 Method Overloading
 Different number or types of function parameters

 Return type is meaningless

 Valid in the same class or classes with inheritance relationship

void print() { … } // method overloading
void print(String s) { … } // method
overloading
void print(int n) { … } // method overloading
void print(String s, int n) { … } // method
overloading
int print(int n) { … } // error

Method Overriding

 Method Overriding
 The function’s signature is the same

 Only meaningful in inheritance relationships

class Parent {
void print() { … }
void print(String s, int n) { … }

}
class Child extends Parent {

void print() { xxx } // method overriding
void print(String s, int n) { xxx } //

method overriding
}

Interface vs Abstract Class

 Interface
 Can have constants and abstract methods (only the function

signature of the class to be implemented)

 From Java 8, it can have default and static methods (pre-
implemented function)

 Class implementing interface must implement those that have
only function signature.

 Members of a Java interface are public by default

 Abstract Class
 Has one or more abstract methods (only the function

signature)

 Can have member fields

 Can have abstract and non-abstract methods

 Can have class members like private, protected, public, default

Interface

// IShape.java

interface IShape {

double calcArea();

double calcPerimeter();

}

// RectangleImpl.java

class RectangleImpl implements IShape {

private double width, height;

public RectangleImpl(double width,

double height) {

this.width = width;

this.height = height;

}

Interface

Interface

@Override

public double calcArea() {

return width * height;

}

@Override

public double calcPerimeter() {

return 2 * (width + height);

}

public double getHeight() { return height; }

public double getWidth() { return width; }

}

Interface

// RectangleMain.java

class RectangleMain {

public static void main(String[] args) {

IShape r = new RectangleImpl(10., 20.);

System.out.println(r.calcArea());

}

}

Interface – default method

//IValue.java

interface IValue {

default int getValue() { return 0; }

}

// ValueImpl1.java

class ValueImpl1 implements IValue {

private String name = "ValueImpl1";

ValueImpl(String s) { name = s; }

public String getName() { return name; }

public void setName(String s) {

name = s;

}

}

Interface – default method

// ValueImpl2.java

class ValueImpl2 implements IValue {

private String name;

ValueImpl2() {

name = "ValueImpl2";

}

public String getName() { return name; }

public void setName(String s) {

name = s;

}

public int getValue() { return 1; } // default
method overriding

}

Interface – default method

// ValueMain.java

class ValueMain {

public static void main(String[] args) {

ValueImpl1 v1 = new ValueImpl1("ValueImpl1");

ValueImpl2 v2 = new ValueImpl2();

System.out.println(v1.getName());

System.out.println(v2.getName());

IValue i1 = v1;

IValue i2 = v2;

System.out.println(i1.getValue()); // 0

System.out.println(i2.getValue()); // 1

}

}

Abstract Class

// Shape.java

abstract class Shape {

public abstract double calcArea();

public abstract double calcPerimeter();

}

// RectangleImpl.java

class Rectangle extends Shape {

private double width, height;

public Rectangle(double width, double height) {

this.width = width;

this.height = height;

}

Abstract Class

@Override

public double calcArea() {

return width * height;

}

@Override

public double calcPerimeter() {

return 2 * (width + height);

}

public double getHeight() { return height; }

public double getWidth() { return width; }

}

public class Circle extends Shape {
private double radius;
public Circle(double radius) {

this.radius = radius;
}
@Override
public double calcArea() {

return Math.PI * radius * radius;
}
@Override
public double calcPerimeter() {

return 2 * Math.PI * radius;
}
public double getRadius() { return radius; }

}

Abstract Class

Abstract Class

// AbstractShapeMain.java

class AbstractShapeMain {

public static void main(String[] args) {

Shape r = new Rectangle(20.0, 10.0);

Shape c = new Circle(10);

System.out.printf("Rectangle area:

%.2f\n", r.calcArea()); // dynamic binding

System.out.printf("Circle perimeter:
%.2f\n", c.calcPerimeter()); // dynamic binding

}

}

Multiple Inheritance

 The “diamond problem” is an ambiguity that can arise
as a consequence of allowing multiple inheritance.

 Java does not allow multiple inheritance.

 Use interfaces instead of classes to achieve the same
purpose

Multiple Inheritance

extendsimplements

Multiple Inheritance

interface IShape {

double calcArea();

double calcPerimeter();

}

class Rectangle {

private double width, height;

public Rectangle(double width, double height) {

this.width = width;

this.height = height;

}

public double getHeight() { return height; }

public double getWidth() { return width; }

}

// RectangleImpl2.java

class RectangleImpl2 extends Rectangle

implements IShape {

public RectangleImpl2(double width,

double height) {

super(width, height);

}

@Override

public double calcArea() {

return getWidth() * getHeight();

}

@Override

public double calcPerimeter() {

return 2 * (getWidth() + getHeight());

}

}

Multiple Inheritance

// RectangleMain.java

class RectangleMain {

public static void main(String[] args) {

RectangleImpl2 r = new RectangleImpl2(10, 10);

Rectangle r2 = r;

System.out.println(r2.getHeight());

IShape s = r;

System.out.println(s.calcArea());

}

}

Multiple Inheritance – Interface default
method

interface IValue {

default int getValue() { return 0; }

}

class ValueImpl {

private String name = "ValueImpl";

ValueImpl() { }

ValueImpl(String s) { name = s; }

public String getName() { return name; }

public void setName(String s) {

name = s;

}

}

Multiple Inheritance – Interface default
method

// ValueImpl1.java

class ValueImpl1 extends ValueImpl implements IValue {

ValueImpl1(String s) {

super(s);

}

}

// ValueImpl2.java

class ValueImpl2 extends ValueImpl implements IValue {

ValueImpl2() {

super();

setName("ValueImpl2");

}

public int getValue() { return 1; } // default
method overriding

}

Multiple Inheritance – Interface default
method

// ValueMain.java

class ValueMain {

public static void main(String[] args) {

ValueImpl1 v1 = new ValueImpl1("ValueImpl1");

ValueImpl2 v2 = new ValueImpl2();

System.out.println(v1.getName());

System.out.println(v2.getName());

IValue i1 = v1;

IValue i2 = v2;

System.out.println(i1.getValue()); // 0

System.out.println(i2.getValue()); // 1

}

}

 Polymorphism
 Allow us to perform a single action in different ways

 Execute specialized actions based on its type

 Call overridden methods in child classes from the parent
reference variable at run time (dynamic binding)

Polymorphism

public class ShapeTag {

private String tag;

public ShapeTag(String tag) {

this.tag = tag;

}

public String toString() { return "#" + tag; }

}

public class RectangleTag extends ShapeTag {

private String rectangleTag;

public RectangleTag(String tag,

String rectangleTag) {

super(tag);

this.rectangleTag = rectangleTag;

}

@Override // Object toString method overriding

public String toString() {

return "#" + rectangleTag + " "

+ super.toString();

}

public String getRectangleTag() {

return rectangleTag;

}

}

public class CircleTag extends ShapeTag {

private String circleTag;

public CircleTag(String tag,

String circleTag) {

super(tag);

this.circleTag = circleTag;

}

@Override // Object toString method overriding

public String toString() {

return "#" + circleTag + " "

+ super.toString();

}

public String getCircleTag() {

return circleTag;

}

}

Polymorphism

ShapeTag s1 = new ShapeTag("shape1");

ShapeTag s2 = new ShapeTag("shape2");

RectangleTag r =

new RectangleTag("shape", "rectangle");

CircleTag c = new CircleTag("shape", "circle");

System.out.println("Shape1 Tag: " + s1);

System.out.println("Shape1 Tag: " + s2);

System.out.println("Rectangle Tags: " + r);

System.out.println("Circle Tags: " + c);

Shape1 Tag: #shape1

Shape2 Tag: #shape2

Rectangle Tags: #rectangle #shape

Circle Tags: #circle #shape

Polymorphism

s1 = r; // upcasting

s2 = c; // upcasting

System.out.println("Rectangle Tags: " + s1); //
dynamic binding

System.out.println("Circle Tags: " + s2); //
dynamic binding

Rectangle Tags: #rectangle #shape

Circle Tags: #circle #shape

Polymorphism

ArrayList list = new ArrayList();

list.add(new ShapeTag("shape1"));

list.add(new ShapeTag("shape2"));

list.add(new RectangleTag("shape", "rectangle"));

list.add(new CircleTag("shape", "circle"));

for (Object o : list) {

System.out.println(o); // dynamic binding

}

calcArea() using Polymorphism

 The area calculation method differs depending on the
type of Shape.

 Comparison between non-OOP and OOP polymorphism
 Version 1 – Use instanceof to classify the class object, and then

call the calcArea()

 Version 2 – Use polymorphism

Rectangle r = new Rectangle(3, 4);

Circle c = new Circle(5);

Shape[] shapes = new Shape[2];

shapes[0] = r;

shapes[1] = c;

for (Shape shape : shapes) {

if (shape instanceof Rectangle) {

Rectangle r = (Rectangle) shape;

System.out.println(r.calcArea());

}

else if (shape instanceof Circle) {

Circle c = (Circle) shape;

System.out.println(c.calcArea());

}

}

 Version 1: Use instanceof

calcArea() using Polymorphism

 What if a new class called Triangle is added?
for (Shape shape : shapes) {

if (shape instanceof Rectangle) {
Rectangle r = (Rectangle) shape;
System.out.println(shape.calcArea());

}
else if (shape instanceof Circle) {

Circle c = (Circle) shape;
System.out.println(c.calcArea());

}
else if (shape instanceof Triangle) {

Triangle t = (Triangle) shape;
System.out.println(t.calcArea());

}
}

calcArea() using Polymorphism

 Version 2 – Use polymorphism

 What if a new class called Triangle is added?

for (Shape shape : shapes)

System.out.println(shape.calcArea());

calcArea() using Polymorphism

Generics

 ArrayList
 Data structure that allows access to elements using index,

similar to array

 ArrayList is dynamic in size.

 ArrayList cannot contains primitive data types, and it can only
contains objects

 You can insert elements into the ArrayList using add() method

 Length of the ArrayList is provided by the size() method

ArrayList list = new ArrayList();

list.add("Seoul");

list.add(new String("Tokyo"));

list.add(new Integer(3));

list.add(5); // auto-boxing

 Problem with non-generic ArrayList
 Can store any type of object

 Need typecasting (downcasting) when using the object

 Need to remember which element is which datatype is

 Mainly used for one data type

Generics

String s1 = list.get(0); // compile error –
need typecasting

String s2 = (String) list.get(1);

String s3 = (String) list.get(2); // runtime
exception

Integer i1 = (Integer) list.get(2);

int i2 = (Integer) list.get(3); // auto-
unboxing

Generics

 Generics make errors to appear compile time than at
run time.

ArrayList<String> list = new ArrayList<>();

list.add("Seoul");

list.add(new String("Tokyo"));

list.add(new Integer(3)); // compile error

String s = list.get(0); // no need for type
casting

Generics

class MyArrayList<E> {

ArrayList list;

public MyArrayList() {

list = new ArrayList();

}

public void add(E e) {

list.add(e);

}

public E get(int i) {

return (E) list.get(i);

}

}

 Create a generic MyArrayList

Generics

MyArrayList<String> l = new MyArrayList<>();

l.add("temp");

l.add("add");

String s = l.get(0);

