
SOLID Design Principles

514770-1
Fall 2024
9/11/2024

Kyoung Shin Park
Computer Engineering

Dankook University

S.O.L.I.D.: First 5 Principles of OOD

 Robert C. Martin collected 10 principles of Object Oriented
Design (2000).
 The first 5 principles - so called SOLID – deal with the design of

classes. This principles is for easy-to-understand, flexible, and easy-
to-maintain software development.

Acronym Principle 한글 명칭

SRP Single Responsibility 단일 책임 원칙

OCP Open-Closed 개방-폐쇄 원칙

LSP Liskov Substitution 리스코프 치환 원칙

ISP Interface Segregation 인터페이스 분리 원칙

DIP Dependency Inversion 의존 역전 원칙

Single Responsibility Principle

 A class should only have a single responsibility. In
other words, it should have only one reason to
change.

 Responsibility as a ‘reason to change’

 Gather together those things that change for the
same reason, and separate those things that change
for different reasons.

 If there are too many features in a class, it makes
difficult to maintain.

Single Responsibility Principle

 Book class example
 load() reads the Book information and store it in member variables

 show() displays the Book information on the console screen

Single Responsibility Principle

 Book & BookManager class example
 Book remove load() and show()

 BookManager add load() & show()

 load() reads the Book information from a file and store it in member
variables

 show() displays the books on the console screen

 If the program is no longer modified, this design keeps SRP.

Single Responsibility Principle

 However, if you add features or new behavior, you must reconsider
SRP.

 What if you create load() that reads and stores book data from a
database rather than a file?

 What if you create show() that displays the contents of a book on the
GUI(Graphical User Interface) screen instead of the console screen?

Open-Closed Principle

 “Software entities (class, module, etc) should be open
for extension, but closed for modification.”

 You should be able to extend a class behavior,
without modifying it.

 Example: Assume a program that opens a door
 There are three types of doors

 Sliding door – door that slide

 Knob door – door with a handle

 Automatic door – button type automatic door

Open-Closed Principle

 Version 1
 Using the if-statement depending on the type of door

 However, if a new door is added, the code modification is
inevitable.

if (door instanceof AutomaticDoor)
client.pressOpen(door);

else if (door instanceof KnobDoor)
client.twistOpen(door);

else if (door instanceof SlidingDoor)
client.slideOpen(door);

Open-Closed Principle

 Version 2
 Using polymorphism

 If a new door is added, you just add a new door class and
override the open() method.

door.open();

Open-Closed Principle

 Another example
 BookManager.load() method

 BookDataLoader class reads the data from the file.

 BookDataLoaderFromDB class reads the data from the
database.

Open-Closed Principle

 Version 1
 Using the if-statement depending on the type of loader

 if a new loader is added, the code modification is inevitable.

if (loader instanceof BookDataLoaderFromFile)
manager.loadFromFile(loader);

else if (loader instanceof BookDataLoaderFromDB)
manager.loadFromDB(loader);

Open-Closed Principle

 Version 2
 Using polymorphism

loader.load();

Liskov Substitution Principle

 “Objects in a program should be replaceable with
instances of their subtypes without altering the
correctness of that program.”

 Subtypes should be substitutable for their base types.

 Child classes should never break the parent class’ type
definitions.

 In other words, even if you do upcasting, there should
be no problem.

 "a violation of LSP is a latent violation of OCP"

Liskov Substitution Principle

 Example: Rectangle and Square class
 Square is a special kinds of rectangle.

 Is the Square class really the subclass of the Rectangle class in
programming?

Liskov Substitution Principle

class Rectangle {
private int width;
private int height;
public Rectangle(int w, int h) {

width = w;
height = h;

}
public int getPerimeter() {

return 2 * (width + height);
}
public void setWidth(int w) { width = w; }
public void setHeight(int h) { height = h; }

}

Liskov Substitution Principle

class Square extends Rectangle {
public Square(int w) {

super(w, w);
}
@Override
public void setWidth(int w) {

super.setWidth(w);
super.setHeight(w);

}
@Override
public void setHeight(int h) {

super.setWidth(h);
super.setHeight(h);

}
}

Liskov Substitution Principle

class Main {
public static void main(String[] args) {

Rectangle r = new Rectangle(3, 5);
System.out.println(r.getPerimeter()); // 16 (2*8)
Square s = new Square(3);
System.out.println(s.getPerimeter()); // 12 (2*6)
r = s;
r.setWidth(3); // set w=3, h=3
r.setHeight(5); // set w=5, h=5
System.out.println(r.getPerimeter()); // 20 (2*10)

}
}

 Square cannot completely substitute Rectangle. The
correct design should be both Rectangle and Square
derive from a common Shape class.

Interface Segregation Principle

 “Many client-specific interfaces are better than one
general-purpose interface.”

 “do not force any client to implement an interface
which is irrelevant to them“

 Each interface should have a specific responsibility.

Interface Segregation Principle

Interface Segregation Principle

Interface Segregation Principle

 Interface Segregation

Dependency Inversion Principle

 “One should depend upon abstractions, not
concretions.”

 You should write a code that uses abstract classes or
interfaces rather than concrete classes or methods that
implement the functionality.

 What is a dependency between classes?
 When one class performs a function, and needs a service of

another class.

 To become OCP, DIP must be satisfied basically.

 How do you distinguish between easy-to-change and
hard-to-change?
 Hard-to-change: “policy”, “strategy”

 Easy-to-change: “concrete way”, “things”

Dependency Inversion Principle

Dependency Inversion Principle

 Violation of DIP - High-level modules, which provide
complex logic, should not import anything from low-
level modules, which provide utility features.

Concrete class

Dependency Inversion Principle

 Apply DIP – Need to introduce an abstraction that
decouples the high-level and low-level modules from
each other

Abstraction

Dependency Inversion Principle

Abstraction

