
Decorator Pattern

514770-1
Fall 2024
10/2/2024

Kyoung Shin Park
Computer Engineering

Dankook University



Decorator Pattern

 “Attach additional responsibilities to an object 
dynamically. Decorators provide a flexible alternative 
to subclassing for extending functionality.”

 This pattern creates a decorator class which wraps the 
original class and provides additional functionality 
keeping class methods signature intact.

 Also known as “Wrapper”

 Also this pattern is really useful and commonly faced 
java interview question on design patterns.



Decorator Pattern

 All subclasses of java.io.InputStream, OutputStream, 
Reader and Writer have a constructor taking an instance 
of same type.

 java.util.Collections, the checkedXXX(), synchronizedXXX() 
and unmodifiableXXX() methods

 javax.servlet.http.HttpServletRequestWrapper and 
HttpServletResponseWrapper

 javax.swing.JScrollPane



Problem

 Suppose you want to add additional features or 
behaviors to an existing object. 
 Inheritance is not feasible because it is static and applies to 

an entire class. 

 In fact, it has been shown that extending objects using 
inheritance often results in an exploding class hierarchy.

 Can you add new features without using inheritance?



Decorator Pattern

Description

Pattern Decorator

Problem There are various kinds that are slightly different.
The more kinds increase, the more difficult to 
expand.

Solution Add object functionality using composition rather 
than inheritance. Extension at runtime (not at 
compile time)

Result Open Closed Principle, Extendibility 

 The decorator pattern allows a user to add new 
functionality to an existing object without altering its 
structure.



Each decorator contains 
a reference to the 
Component object.



Define Decorator Pattern

 Component
 This is the wrapper which can have additional responsibilities 

associated with it at runtime

 ConcreteComponent
 This is the original object to which the additional responsibilities 

are added in program.

 Decorator
 This is an abstract class which contains a reference to the 

component object and also implements the component 
interface.

 ConcreteDecorator
 They extend the decorator and build additional functionality on 

top of the Component class.

 Decorator can extend the state of Component.



Decorator Pattern

 Decorator pattern is designed in a way that multiple 
decorators can be stacked on top of each other, each 
adding new functionality.

 In contrast to inheritance, a decorator can operate on 
any implementation of a given interface, which 
eliminates the need to subclass an entire class hierarchy.

 The decorator adds its own behavior either before 
and/or after delegating to the object it decorates to do 
the rest of the job.

 In the decorator pattern, inheritance is not to inherit 
a behavior, but to conform to the form.

 Component can be an abstract class or interface.



Starbuzz Coffee (HFDP Ch. 3)

 Starbuzz Coffee has made a name for itself as the 
fastest growing coffee shop around.
 Because they’ve grown so quickly, they’re scrambling to update 

their ordering systems to match their beverage offerings.

 When they first went into business, they designed their classes 
like this..



Starbuzz Coffee (HFDP Ch. 3)

 In addition to your coffee, you can also ask for several 
condiments like steamed milk, soy, mocha(chocolate), 
and whipped cream. Starbuzz charges a bit for each 
of these, so they really need to get them built into 
their order system. Here’s their first attempt…..

 Problems with maintenance
 What if a new topping is added?

 What if the prices of existing ingredients (milk, cream, etc) 
increase?

Class explosion



Starbuzz Coffee (HFDP Ch. 3)

 Beverage base class add instance variables to represent 
whether or not each beverage has milk, mocha, whip…
 The superclass cost() will calculate the costs for all of the 

condiments.

 The overridden cost() will extend that functionality to include costs 
for that specific beverage type.



Starbuzz Coffee (HFDP Ch. 3)

 We’ve seen that representing our beverage plus 
condiment pricing with inheritance has not worked out 
very well – class explosions, rigid designs, or we add 
functionality to the base class that isn’t appropriate for 
some of the subclasses.

 We’ll start with a beverage and “decorate” it with the 
condiments at runtime.

 If a customer wants a DarkRoast with Mocha and Whip
 Take a DarkRoast object

 Decorate it with a Mocha object

 Decorate it with a Whip object

 Call the cost() method and rely on delegate to add on the 
condiment costs

 Mocha, Whip are decorator objects as “wrappers”.



Starbuzz Coffee (HFDP Ch. 3)

DarkRoast

cost()

 Constructing a drink order with Decorators
 Start with DarkRoast object

 DarkRoast inherits from Beverage and has a cost() method that 
computes the cost of the drink.



Starbuzz Coffee (HFDP Ch. 3)

 The customer wants Mocha, so we create a Mocha object and 
wrap it around the DarkRoast.

 The Mocha object is a decorator. Its type “mirrors” (mean it is 
the same type) the object it is decorating, in this case, a 
Beverage.

 So, Mocha has a cost() method, and through polymorphism we 
can treat any Beverage wrapped in Mocha as a Beverage, too 
(because Mocha is a subtype of Beverage).

DarkRoast

cost()

cost()

Mocha



DarkRoast

cost()
Mocha

cost()cost()

Whip

Starbuzz Coffee (HFDP Ch. 3)

 The customer also wants Whip, so we create a Whip object and 
wrap Mocha with it.

 Whip is a decorator, so it also mirrors DarkRoast’s type (Whip is a 
subtype of Beverage).

 So, a DarkRoast wrapped in Mocha and Whip is still a Beverage, and 
we can do anything with it we can do with a DarkRoast, including call 
its cost() method.



 It’s time to compute the cost for the customer. 

 We do this by calling cost() on the outermost decorator, Whip.

 Whip is going to delegate computing the cost to the objects it 
decorates. – Whip calls cost() on Mocha. Mocha calls cost() on 
DarkRoast. DarkRoast returns its cost, 99 cents. Mocha adds its cost, 
20 cents, and returns the new total, $1.19.

 Once it gets a cost, it will add on the cost of the Whip. - Whip adds 
its cost 10 cents, and returns the final total, $1.29.

Starbuzz Coffee (HFDP Ch. 3)

DarkRoast

cost()
Mocha

cost()cost()

Whip

.99
.20.10

호출

반환

call

return



Starbuzz Coffee (HFDP Ch. 3)

 Beverage acts as our abstract Component class.

component



Starbuzz Coffee (HFDP Ch. 3)

public abstract class Beverage {
String description = "Beverage";

public String getDescription() {
return description;

}
// the different types of beverages 
// will have different cost
public abstract double cost();

}

public abstract class CondimentDecorator
extends Beverage {

public abstract String getDescription();
}



Starbuzz Coffee (HFDP Ch. 3)

public class Espresso extends Beverage {
public Espresso() {

description = "Espresso";
}
public double cost() {

return 1.99;
}

}

public class HouseBlend extends Beverage {
public HouseBlend() {

description = "House Blend Coffee";
}
public double cost() {

return .89;
}

}



Starbuzz Coffee (HFDP Ch. 3)

public class Mocha extends CondimentDecorator {
Beverage beverage; 
public Mocha(Beverage beverage) {

this.beverage = beverage;
}
public String getDescription() {

return beverage.getDescription() + " Mocha 
";

}
public double cost() {

return beverage.cost() + .20;
}

}



Starbuzz Coffee (HFDP Ch. 3)

public class Whip extends CondimentDecorator {
Beverage beverage; 
public Whip(Beverage beverage) {

this.beverage = beverage;
}
public String getDescription() {

return beverage.getDescription() + " Whip 
";

}
public double cost() {

return beverage.cost() + .10;
}

}



Starbuzz Coffee (HFDP Ch. 3)
public class StarbuzzCoffee {

public static void main(String[] args[]) {
Beverage b = new Espresso();
System.out.println(b.getDescription() 

+ " $" + b.cost());
b = new DarkRoast();
b = new Mocha(b);
b = new Mocha(b); // add second mocha
b = new Whip(b);
System.out.println(b.getDescription() 

+ " $" + b.cost());
b = new HouseBlend();
b = new Soy(b);
b = new Mocha(b);
b = new Whip(b);
System.out.println(b.getDescription() 

+ " $" + b.cost());
}

}



Java I/O

 Java I/O is handled by the io package, and the 
decorator pattern is used around the following four 
classes.

 The following classes are used as the decorator and 
cannot be used directly because they are abstract 
classes.

Input Output

Byte InputStream OutputStream

Text Reader Writer



Java I/O

FileInputStream

BufferedInputStream

 Component - FileInputStream

 Decorator - BufferedInputStream

 Read bytes of data into the buffer

 Provide the readLine() method to read input line by line

 Decorator - LineNumberInputStream

 Provide a extra functionality of keeping track of the current 

line number.



Java I/O

Abstract Component

Abstract decorator

ConcreteDecorators

ConcreteComponents



Java I/O – File I/O

 FileInputStream

import java.io.FileInputStream;

public class ReadFile { 
public static void main(String[] args) {

try {
FileInputStream fis

= new FileInputStream("readme.txt");
int b = fis.read();
System.out.println("b = " + b);

}
catch (Exception e) {

e.printStackTrace();
}

}
}



Java I/O – File I/O

 BufferedInputStream
import java.io.FileInputStream;
import java.io.BufferedInputStream;

public class ReadFile { 
public static void main(String[] args) {

try {
BufferedInputStream bis

= new BufferedInputStream(
new FileInputStream("readme.txt"));

int b = bis.read();
System.out.println("b = " + b);

}
catch (Exception e) {

e.printStackTrace();
}

}
}



Java I/O – File I/O



Java I/O – File I/O

 FileReader

import java.io.FileReader;

public class ReadFile { 
public static void main(String[] args) {

try {
FileReader fr

= new FileReader("readme.txt");
int b = fr.read();
System.out.println("b = " + b);

}
catch (Exception e) {

e.printStackTrace();
}

}
}



Java I/O – File I/O

 BufferedReader
import java.io.FileReader;
import java.io.BufferedReader;

public class ReadFile { 
public static void main(String[] args) {

try {
BufferedReader br

= new BufferedReader(
new FileReader("readme.txt"));

String line = br.readLine();
System.out.println("line = " + line);

}
catch (Exception e) {

e.printStackTrace();
}

}
}



 파일 입력 예제 – LineNumberReader 사용

Java I/O – File I/O

import java.io.FileReader;
import java.io.LineNumberReader;

public class ReadFile { 
public static void main(String[] args) {

try {
LineNumberReader lnr

= new LineNumberReader(
new FileReader("readme.txt"));

String line = lnr.readLine();
System.out.println("line " + 

lnr.getLineNumber() + " = " + line);
}
catch (Exception e) {

e.printStackTrace();
}

}
}



Lower Case Decorator (HFDP Ch. 3)

 LowerCaseInputStream decorator converts all 
uppercase letters in the input stream to lowercase 
letters.

import java.io.FilterInputStream;

public class LowerCaseInputStream
extends FilterInputStream { 

public LowerCaseInputStream(InputStream in) {
super(in);

}
public int read() throws IOException {

int c = super.read();
return ((c == -1) ? c : 

Character.toLowerCase((char) c));
}



Lower Case Decorator (HFDP Ch. 3)

public int read(byte[] b, int offset, int len) 
throws IOException {

int result = super.read(b, offset, len);
for (int i = offset; i < offset + result; i++) {
b[i] = (byte)Character.toLowerCase((char)b[i]);

}
}

} // end of LowerCaseInputStream



Lower Case Decorator (HFDP Ch. 3)
public class InputTest {
public static void main(String[] args) 

throws IOException {
int c;
try {
InputStream in = new LowerCaseInputStream(

new BufferedInputStream(
new FileInputStream("test.txt")));

while ((c = in.read()) >= 0) {
System.out.print((char) c);

}
in.close();

}
catch (IOException e) {
e.printStackTrace();

}
}

}


