Factory Pattern
Builder Pattern

514770-1
Fall 2024
10/16/2024
Kyoung Shin Park
Computer Engineering
Dankook University

Factory Method Pattern

0 “Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.”

0 Also known as “Virtual Constructor”.
0 The “new” operator considered harmful.

O Provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of
objects that will be created.

O Factory pattern is one of the most used design pattern
In Java.

Factory Method Pattern

O java.util.Calender#getinstance()

O java.util.ResourceBundle#getBundle()
O java.text. NumberFormat#getlinstance()
O java.nio.charset.Charset#forName()

O java.net.URLStreamHandlerFactory#createURLStreamHand
ler(String)

O java.uti.EnumSet#of()
O javax.xml.bind.JAXBContext#createMarshaller()

Abstract Factory Pattern

0 “Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.”

0O A hierarchy that encapsulates many possible “platforms”,
and the construction of a suite of “products”

0o Also known as “Factory of Factories”
0 The "new” operator considered harmful.

O Lets you produce families of related objects without
specifying their concrete classes.

Abstract Factory Pattern

O javax.xml.parsers.DocumentBuilderFactory#newlnstance()
O javax.xml.transform.TransformerFactory#newlnstance()
O javax.xml.xpath.XPathFactory#newlnstance()

Problem

O Problem with “new”

= “new” instantiates a concrete class, so that's definitely an
implementation, not an interface.

= This example shows different duck classes, and we don’t know
until runtime which one we need to instantiate.
Duck duck;
if (picnic) {
duck = new MallardDuck();
} else if (hunting) {
duck = new DecoyDuck();
} else if (inBathTub) {
duck = new RubberDuck();
}

= OCP violation (not closed for modification)
Code needs to be modified when it's time for change or extension
Making maintenance and updates more difficult and error-prone

Problem

@Mallard[}uck

newl)

new()

Y

@Hubber[}uck

> @ DecoyDuck

Pattern

Problem

Solution

Result

Factory Method, Abstract Factory

Whenever creating an object using new(), it

violates principle of programming for interface rather
than implementation which eventually result in inflexible
code and difficult to change in maintenance.

Another problem is class needs to contain objects of other
classes or class hierarchies within it; this can be very easily
achieved by just using new(). This is a very hard coded
approach to create objects as this creates dependency
between the two classes.

All factories encapsulate object creation.

Factory Pattern promotes loose coupling by eliminating the
need to bind application-specific classes into the
code. Dependency Inversion Principle

Pizza Store (HFDP Ch. 4)

O Let's say you have a pizza shop in Objectville.
0 You might end up writing some code like this..

void prepareToBoxing(Pizza pizza) {
pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

¥

Pizza orderPizza() {
Pizza pizza = new Pizza();

prepareToBoxing(pizza);
return pizza;

}

Pizza Store (HFDP Ch. 4)

O But you need more than one type of pizza

Pizza orderPizza(String type) {
Pizza pizza;

if (type.equals("cheese™)) {
pizza = new CheesePlzza()

} else if (type.equals(’ greek") {
pizza = new GreekPizza();

} else if (type.equals("pepperoni") {
pizza = new PepperoniPizza();

} Instantiate the
correct concrete
class based on

prepareToBoxing(pizza); the type of pizza

return pizza;

Pizza Store (HFDP Ch. 4)

O This code is NOT closed for modification.

Pizza orderPizza(String type) {
Pizza pizza;

if (type.equals("cheese")) { —_

pizza = new CheesePizza();

Jelseif (type.equals{“greek) reakPizzal);

} else if (type.equals(“"pepperoni®) {| This is what
pizza = new PepperoniPizza(); ™ aries.
} else if (type.equals("clam") {
pizza = new ClamPlzza()
} else if (type.equals(" veggle") {
pizza = new VeggiePizza();
} This is what
prepareToBoxing(pizza); e expect to
return plzza; stay the same.

¥

Pizza Store (HFDP Ch. 4)

O Encapsulating object creation

public class SimplePizzaFactory {
public Pizza createPizza(String type) {
Pizza pizza = null;
if (type.equals("cheese")) {
pizza = new CheesePizza();
} else if (type.equals("pepperoni") {
pizza = new PepperoniPizza();
} else if (type.equals("clam") {
pizza = new ClamPizza();
} else if (type.equals("veggie") {
pizza = new VeggiePizza();

¥

return pizza;

Pizza Store (HFDP Ch. 4)

O Building a SimplePizzaFactory and reworking the
PizzaStore class

public class PizzaStore {
SimplePizzaFactory factory;
public PizzaStore(SimplePizzaFactory factory) {
this.factory = factory;

public Pizza orderPizza(String type) {
Pizza pizza = null;
pizza = factory.createPizza(type);
prepareToBoxing(pizza);
return pizza;

¥

void prepareToBoxing(Pizza pizza
Hd propareEoxinel pzza)
}
}

Pizza Store (HFDP Ch. 4)

0O PizzaStore Class Diagram

@Pizzasmre

©SimplePizzaFactnw
» prepare() | can be used

orderPizzal)

>

createPizzal) bake()

@Pizza Pizza is defined as an
abstract class that

by

overriding methods.

cut()
createPizza() method box()
is also implemented
as static.

@CheesePizza @VeggiePizza @ClamPizza

@PeppemniPizza

Each Pizza class implements Pizza.

Pizza Store (HFDP Ch. 4)

ICHEHt ‘ ISimpIePizzaFactuw‘ l PizzaStore ‘ I Pizza ‘
 factory= I | I
' factory new() > ! |
! fact ! | !
| newl(factory) | o |
| orderPizzal EhEEFE) > |
: :{ pizza=createPizzal"cheese") | |
: : : preparel{}l}:
| | 1 b k |
| | D5
| | 1 t |
i i : cut() >
| | | b |
: : : ox() >

‘ Client ‘ ‘ SimplePizzaFactory ‘ PizzaStore ‘ ‘ Pizza ‘

Simple Factory

O Simple Factory determines which object to create and
return the right object for user
= In general, it determines the object to be created according to
the string using the "if" statement.
0 The Simple Factory isn't actually a design pattern; it's
more of a programming idiom. But it is commonly
used.

Pizza Franchise (HFDP Ch. 4)

0O As the franchiser, you want to ensure the quality of
the franchise operations. But, each franchise might
want to offer different styles of pizzas (New York,
Chicago, California).

NYPizzaFactory makes
You want all the NY style pizzas: thin
crust, tasty sauce and
just a little cheese.

francise pizza stores
to leverage your
PizzsaStore code X so

the pizzas(are prepared NYPizzaFactory
in the same\ way.

ChicagoPizzaFactory

. makes Chicago style
pizzas: thick crust,
rich sauce and tons of

ChicagoPizzaFactorCyheese'

PizzaStore

O If we take out SimplePizzaFactory and create 3 different
factories, then we can just compose the PizzaStore with
the appropriate factory.

NYPizzaFactory nyFactory = new NYPizzaFactory();

PizzaStore nyStore = new PizzaStore(nyFactory);
nyStore.orderPizza("veggie");

ChicagoPizzaFactory cFactory = new ChicagoPizzaFactory();
PizzaStore chicagoStore = new PizzaStore(cFactory);
chicagoStore.orderPizza("veggie");

O Problem

Since PizzaStore is separate from the pizza creation, it guarantee
the flexibility, but it may be difficult to employ their own
home grown procedures. (orderPizza process in PizzaStore)

Different pizza stores may want different process.

Pizza Franchise (HFDP Ch. 4)

0 A framework that ties the pizza store and the pizza

creation together, yet still allows things to remain
flexible.

= There is a way to localize all the pizza making activities to the
PizzaStore class, and yet give the franchises freedom to have
their own regional style.

= Put the createPizza() method back into PizzaStore, but this time
as an abstract method, and then create a PizzaStore subclass for
each regional style.

= We're going to have a subclass for each regional type
(NYPizzaStore, ChicagoPizzaStore, CaliforniaPizzaStore) and each
subclass is going to make the decision about what makes up a
pizza.

Pizza Franchise (HFDP Ch. 4)

public abstract class PizzaStore {
void prepareToBoxing(Pizza pizza) {
pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

¥

public Pizza orderPizza(String type) {
Pizza pizza = createPizza(type); createPizza is back to

3 : . being a call to a
prepareToBox1ng(plzza), rethod in the

return plzza, PizzaStore rather than
} on a factory object.

// factory method
abstract Pizza createPizza(String type);

Pizza Franchise (HFDP Ch. 4)

@ PizzaStore

createPizzal)
orderPizzal)

AN

@N‘FF‘izzaSturE @ChicagnPizzaStur&

createPizzal) createPizzal)

Pizza Franchise (HFDP Ch. 4)

public class NYPizzaStore extends PizzaStore {
Pizza createPlzza(String type) {
if type. equals("cheese")) {
pizza = new NYStyleCheesePlzza()
} else if (type.equals(’ pepperonl")) {
pizza = new NYStylePepperoniPizza();
} else if (type.equals("clam")) {
pizza = new NYStyleClamPizza();
} else if (type.equals("veggie")) {
pizza = new NYStyleVeggiePizza();
}
}
}

Pizza Franchise (HFDP Ch. 4)

public class ChicagoPizzaStore extends PizzaStore {
Pizza createPizza(String type) {
if type.equals("cheese")) {
pizza = new ChicagoStyleCheesePizza();
} else if (type.equals("pepperoni”)) A
pizza = new ChicagoStylePepperoniPizza();
} else if (type.equals("clam")) {
pizza = new ChicagoStyleClamPizza();
} else if (type.equals("veggie")) {
pizza = new ChicagoStyleVeggiePizza();
}
}
}

The factory method is abstract, so the subclasses are
counted on to handle object creation.

It can separate the client code in the superclass and the
object creation code in the subclass.

abstract Product factoryMethod(String type)

The factory method returns an object of type Product
that is typically used within methods defined in the
superclass.

The factory method isolates the client (e.g., the code in
the superclass, like orderPizza()) from knowing what kind
of concrete Product is actually created.

public abstract class Pizza {
String name;
String dough;
String sauce;

ArraylList toppings = new ArraylList();

void prepare() {
System.out.println("Preparing " + name);
System.out.println("Tossing dough..");
System.out.println("Adding sauce..");
System.out.println("Adding toppings: ");
for (int i = ©; 1 < toppings.size(); i++) {
} System.out.println(" " + toppings.get(i));

void bake() {
System.out.println("Bake for 25 minutes at 350");

}

void cut() A
System.out.println("Cutting the pizza into
diagonal slices");

}
void box() A
System.out.println("Place pizza in official
PizzaStore box");

public String getName() {
return name;

¥
}

public class NYStyleCheesePizza extends Pizza {
public NYStyleCheesePizza() A

name = "NY Style Sauce and Cheese Pizza";
dough = "Th1n Crust Dough"°
sauce = "Marinara Sauce";

topplngs add("Grated Regglano Cheese");
}

public class ChicagoStyleCheesePizza extends Pizza {
public ChicagoStyleCheesePizza () {

name = "Chicago Style Deep Dish Cheese Pizza";
dough = "Extra Thick Crust Dough";
sauce = "Plum Tomato Sauce”;

toppings.add("Shredded Mozzarella Cheese");

void cut() {
System.out.println("Cutting the pizza into
square slices");

}

public class PizzaTestDrive {
public static void main(String[] args) {
PizzaStore nyStore = new NYPizzaStore();
PizzaStore chicagoStore = new ChicagoPizzaStore();
Pizza pizza = nyStore.orderPizza("cheese");
System.out.println("Ethan ordered a "

+ pizza.getName() + "\n");
pizza = chicagoStore.orderPizza("cheese");
System.out.println("Joel ordered a "

+ pizza.getName + "\n");

Factory Method Pattern

public Pizza orderPizza(String type) { &

Creator class Product class
Pizza pizza;

pizza=createPizzaltype); ® PizzaStore
pizza prepare();

pizza. bake(); — - - - @F’Izza
pizza.cut(); m createPizza(String):Pizza
pizza box(); o orderPizza(5tring):Pizza
return pizza;

7

factory method

Pizza createPizza(String type) {
Pizza pizza=null; :

@ NYPizzaStore ifltype.equals("cheese")) L _@ChicachizzaSture @Chlcagcstyle @NYStyl-EChEESE

pizza=new ChicagoStyleCheesePizza(); A s

return pizza
¥

@Chicagcstyle ChicagoStyle ChicagoStyle Chicagustyle
CheesePizza PepperoniPizza ClamPizza VeggiePizza

Factory Method Pattern

@ Product
A

@Cn ncreteProduct

@ Creator

factoryMethodl()
anOperation()

/\

@ ConcreteCreator

factoryMethodl()

Define Factory Method Pattern

O Creator

m Defines a method that needs to create an object whose actual
type is unknown. Does so using abstract method call.

0O ConcreteCreator

m Subclass that overrides the abstract object-instantiation method
to create the Concrete Product.

O Product

= Interface implemented by the created product. Creator accesses
the ConcreteProduct object through this interface.

O ConcreteProduct

m Object used by the Creator (superclass) methods. Implements
the Product interface.

Without Factory Method Pattern?

—public class DependentPizzaStore {

public Pizza createPizza(String style, String type) {
Pizza pizza = null;
if (style. equals("NY")) {
if (type.equals("cheese")) {
pizza = new NYStyleCheesePlzza(),
} else if (type.equals("veggie")) {
pizza = new NYStyleVeggiePizza();

¥

}
else if (style. equals("Chlcago")) {
if (type.equals("cheese")) {
pizza = new Ch1cagoSty1eCheesePlzza(),
} else if (type.equals("veggie")) {
pizza = new ChicagoStyleVeggiePizza();

¥

Families of Pizza Ingredients

0 How to ensure each franchise is using quality
ingredients?

= You're going to build a factory that produces and ships them
to your franchise.

= The problem is that the franchise are located in different
regions. New York uses one set of ingredients and Chicago
another.

Chicago

California
Camari

FreshClams
ThinCrustDough

FrozenClams
ThickCrustDough

VeryThinCrust
ReggianoCheese MozzarellaCheese GoatCheese
MarinaraSauce PlumTomatoSauce BruschettaSauce

Families of Pizza Ingredients

0 To build the ingredient factories, let's start by defining
an interface for the factory that is going to create all
our ingredients.

public interface PizzalngredientFactory {
public Dough createDough();
public Sauce createSauce();
public Cheese createCheese();
public Veggies[] createVeggies();
public Pepperoni createPepperoni();
public Clams createClam();

Families of Pizza Ingredients

0 New York Ingredient Factory

public class NYPizzalngredientFactory implements
PizzaIngredientFactory {
public Dough createDough() {
return new ThinCrustDough();

public Sauce createSauce() {
return new MarinaraSauce();

public Cheese createCheese() {
return new ReggianoCheese();

public Veggies[] createVeggies() {
Veggies veggies[] = { new Garlic(), new Onion(),
new Mushroom(), new RedPepper() };
return veggies;

}

Families of Pizza Ingredients

public Pepperoni createPepperoni() {
return new SlicedPepperoni();

public Clams createClam() {
return new FreshClams();

¥
}

Families of Pizza Ingredients

O Write a new Pizza class

public abstract class Pizza {
String name;)
Dough dough;
Saucg Sauce; . Each Pizza holds a set
Veggies veggies[]; = of ingredients that are
Cheese Cheese; used in its preparation.
Pepperoni pepperoni;
Clams clam; —

abstract void prepare();

void bake() {
System.out.println("Bake for 25 minutes at 350");

¥

Families of Pizza Ingredients

void cut() {
System.out.println("Cutting the pizza into
diagonal slices");

}
void box() {
System.out.println("Place pizza in official
PizzaStore box");

void setName(String name) {
this.name = name;

}

String getName() {
return name;

¥
public String toString() {
// print the Pizza name

}
}

Families of Pizza Ingredients

O In the factory method pattern, NYCheesePizza and

ChicagoCheesePizza classes are the same, except that
they use regional ingredients.

m The pizzas are made the same (dough + sauce + cheese).

They all follow the same preparation steps; they just have
different ingredients.

= So, we really don't need two classes for each pizza; the

ingredient factory is going to handle the regional
differences.

Families of Pizza Ingredients

0 CheesePizza Class

public class CheesePizza extends Pizza {
PizzaIngredientFactory ingredientFactory;
public CheesePizza(PizzalngredientFactory
ingredientFactory) {

this.ingredientFactory = ingredientFactory;

void prepare() {
System.out.println("Preparing " + name);

dough = ingredientFactory.createDough();
sauce = ingredientFactory.createSauce();
cheese = ingredientFactory.createCheese();

¥
}

Families of Pizza Ingredients

O ClamPizza Class

public class ClamPizza extends Pizza {
PizzaIngredientFactory ingredientFactory;
public ClamPizza(PizzalIngredientFactory

ingredientFactory) ({
this.ingredientFactory = ingredientFactory;

void prepare() {
System.out.println("Preparing " + name);
dough = ingredientFactory.createDough();
sauce = ingredientFactory.createSauce();
cheese = ingredientFactory.createCheese();
clam = ingredientFactory.createClam();

Families of Pizza Ingredients

public class NYPizzaStore extends PizzaStore {
protected Pizza createPizza(String item) {
Pizza pizza = null;
PizzaIngredientFactory ingredientFactory =
new NYPizzaIngredientFactory();
if (item.equals("cheese")) {
pizza = new CheesePizza(ingredientFactory);
pizza.setName("New York Style Cheese Pizza");
} else if (item.equals("veggie")) {
pizza = new VeggiePizza(ingredientFactory);
pizza.setName("New York Style Veggie Pizza");
} else if (item.equals("clam")) {

¥

return pizza;

Abstract Factory Pattern

O Abstract Factory allows a client to use an abstract
interface to create a set of related products without
knowing about the concrete products that are actually
produced.

0 In this way, the client is decoupled from any of the
specifies of the concrete products.

0 Abstract Factory can be used for creating cross-platform
Ul elements without coupling the client code to concrete
Ul classes, while keeping all created elements consistent
with a selected operating system (Windows, Mac).

m GUIFactory interface — createButton, createCheckBox

= WindowsFactory — createButton creates Windows button &
createCheckBox creates Windows checkbox

m MacFactory — createButton creates Mac button & createCheckBox
creates Mac checkbox

Abstract Factory Pattern

@Client

@Absn'ac tFactory
@Absn“ac tProductB
createProductAl)
/_Pll\ createProductBl()
' </ R
o ,»-f 1"‘
I |
I | ! ~
: \ @CuncreteFacturyl @CuncreteFacturyE
: ‘1‘ @Absn’ac tProductA
1 \ createProductAl) createProductA()
\ N createProductB() createProductB() 7 41

~ . @ ProductB2 @ ProductAl @ Pru;:juct,ﬁ,z

Y
@Pmductal

Abstract Factory Pattern

O AbstractFactory

m Defines the interface that all concrete factories must implement,
which consists of a set of methods for creating products.

O ConcreteFactory1, ConcreteFactory?2
m Each concrete factory can product an entire set of products.

0 ProductA1, ProductA2
m They are the product family of ProductA.

0 ProductB1, ProductB2
m They are the product family of ProductB.

Factory Method Pattern Example

utin\

@ Calendar

o static getinstance(): java.util.Calendar

T

@Gregu rianCalendar

Difference between Abstract Factory and
Factory Method

O Abstract Factory uses object composition to delegate
responsibility of creating object to another class: object
creation is implemented in methods exposed in the
factory interface.

0 Factory Method uses inheritance and relies on a
subclass to create object: object creation is delegated to
subclasses which implement the factory method to
create objects.

O Factory Method is just a method that can be overridden
In a subclass. Abstract Factory is an object that has
multiple factory methods on it.

O Aims to “Separate the construction of a complex object
from its representation so that the same construction
process can create different representations”.

O It is used to construct a complex object step by step
and the final step will return the object.

0 The builder pattern should be used when we want to
build different immutable objects using the same object
building process.

0 The only big difference between the builder pattern
and the abstract factory pattern is that builder
provides us more control over the object creation

process, and that's it.

Builder Pattern

O java.util.Appendable
O java.lang.StringBuilder#append() [unsynchronized class]
O java.lang.StringBuffer#append() [synchronized class]

O java.nio.ByteBuffer#put() (also on CharBuffer, ShortBuffer,
IntBuffer, LongBuffer, FloatBuffer and DoubleBuffer)

O javax.swing.GrouplLayout.Group@addComponent()

0 Lombok's @Builder annotation is a useful technique to
Implement the builder pattern.

Problem

0 Imagine a complex object that requires laborious, step-
by-step initialization of many fields and nested objects.

0O Such initialization code is usually buried inside a
monstrous constructor with lots of parameters.

0 What if only bun and patty are mandatory, and the rest
are optional We need more constructors. This problem
Is called the telescoping constructor problem.

public Burger(int bun, int patty, boolean cheese, boolean
lettuce, boolean tomato, boolean bacon) { ... }

public Burger(int bun, int patty, boolean cheese, boolean
lettuce, boolean tomato) { ... }

public Burger(int bun, int patty, boolean cheese, boolean
lettuce { ... }

public Burger(int bun, int patty, boolean cheese) { ... }
public Burger(int bun, int patty) { ... }

Problem

O Problem with telescoping constructor

= Making the constructor calls pretty ugly.
// all ingredient
Burger burgerl = new Burger(2, 1, true, true,
true, true);
// bun, patty2, cheese
Burger burger2 = new Burger(2, 2, true);
// bun, patty, bacon
Burger burger3 = new Burger(2, 1, false, false,
false, true);

0 Now let's add more field in the Burger class.

= Problem! One way is to create more constructors, and another is
to lose the immutability and introduce setter methods. You
choose any of both options, and you lose something.
O The Builder pattern help you to consume additional
fields while retainina the immutability of the class.

Pattern

Problem

Solution

Result

Builder

Imagine a complex object that requires laborious, step-by-
step initialization of many fields and nested objects. Such
initialization code is usually buried inside a monstrous
constructor with lots of parameters.

You might make the program too complex by creating a
subclass for every possible configuration of an object. O,
The constructor with lots of parameters has its downside:
not all the parameters are needed at all times.

The Builder pattern lets you construct complex objects step
by step. The Builder doesn't allow other objects to access
the product while it's being built.

OCP SRP

Burger

public class Burger {
private
private
private
private
private
private boolean bacon;
public Burger(int bun,
cheese, boolean lettuce,
boolean bacon) { .. }
public Burger(int bun,
cheese, boolean lettuce,
public Burger(int bun,
cheese, boolean lettuce)

=

int bun; // required

int patty; // required
boolean cheese; // optional
boolean lettuce; // optional
boolean tomato; // optional

// optional

int patty, boolean
boolean tomato,

int patty, boolean

boolean tomato) { .. }

int patty, boolean

{ .. } .
Telescoping
constructors problem

public class Burger {
private int bun; // required
private int patty; // required

private boolean
private boolean
private boolean
private boolean
private boolean

cheese; // optional
lettuce; // optional
tomato; // optional
onion; // optional
bacon; // optional

public Burger(int bun, int patty, boolean
cheese, boolean lettuce, boolean tomato,
boolean onion, boolean bacon) { .. }

public Burger(int bun, int patty, boolean
cheese, boolean lettuce, boolean tomato,

boolean onion) { .

}

-

Telescoping
constructors problem

Builder Pattern

@ Director @Euﬂd&r @Cuncreteamlder

A\

o builder: Builder =
o construct()

o buildpart()
o getResult() : Product

o buildpart()

Y
@ Product

Define Builder Pattern

O Builder

= declares product construction steps that are common to all
types of builders.

O ConcreteBuilder

= provides different implementations of the construction steps.
Concrete builders may produce products that don't follow the
common interface.

O Product

= is an resulting object. Products constructed by different builders
don’t have to belong to the same class hierarchy or interface.

O Director

m defines the order in which to call construction steps, so you can
create and reuse specific configurations of products.

O BurgerBuilder help us in building desired instance with
all required fields and a combination of optional fields.

public cl
private
private
private
private
private
private
private
this.
this.
this.
this.
this
this.

ass Burger {

final int bun; // required

final int patty; // required
final boolean cheese; // optional
final boolean lettuce; // optional
final boolean tomato; // optional
final boolean bacon; // optional
Burger(BurgerBuilder builder) {
bun = builder.bun;

patty = builder.patty;

cheese = builder.cheese;

lettuce = builder.lettuce;

.tomato = builder.tomato;

bacon = builder.bacon;

// all getter, and no setter to provide immutability
public int getBun() {
return bun;

public int getPatty() {
return patty;

}
public boolean getCheese() {
return cheese;

public boolean getlLettuce() {
return lettuce;

.. // getTomato(), getBacon() &7t Het
@Override
public String toString() A

=

Burger

// BurgerBuilder

public static class BurgerBuilder {
private final int bun; // required
private final int patty; // required
private boolean cheese; // optional
private boolean lettuce; // optional
private boolean tomato; // optional
private boolean bacon; // optional

public BurgerBuilder(int bun, int patty) {
this.bun = bun;
this.patty = patty;

public BurgerBuilder cheese(boolean cheese) {

this.cheese = cheese;
return this;
}

.. // lettuce, tomato =t A=k

Burger

// BurgerBuilder

public boolean bacon(boolean bacon) {
this.bacon = bacon;
return this;

}
public Burger build() {
return new Burger(this);

} // end of BurgerBuilder class
} // end of Burger class

Burger

public static void main(String[] args) {

Burger burgerl = new Burger.BurgerBuilder(2,1)
.cheese(true)
.lettuce(true)
.tomato(true)
.bacon(true)
.build();

System.out.println(burgerl);

// bun, patty2, cheese

Burger burger2 = new Burger.BurgerBuilder(2,2)
.cheese(true)
.build(); // no lettuce, tomato, bacon

System.out.println(burger2);

// bun, patty, bacon

Burger burger3 = new Burger.BurgerBuilder(2,2)
.bacon(true)
.build(); // no cheese, lettuce, tomato

System.out.println(burger3);

