
Java Programming II

Lab9

514770-1
Fall 2024

11/27/2024
Kyoung Shin Park

Computer Engineering
Dankook University



Lab9

 Practice to write a program that Flocking of Birds 
(Boids) change its State based on its position and 
direction of their nearby neighbors using State pattern.
 BoidState<T> interface

 WanderState, CohesionState, AlignmentState, SeperationState



Lab9

 Separation

 Separation is a rule to move away from 
nearby neighbors to avoid crowding 
objects around them.

Alignment

 Alignment is a rule to move toward the 
average direction of neighboring objects

Cohesion 

 Cohesion is a rule to find the midpoint 
(Average Position) between all neighbors 
and move towards the midpoint.



Lab9

VISION_RANGE=50

JOIN_THRESHOLD=15

SEPARATION_DISTANCE=20



 BoidState Finite State Machine(FSM)

Lab9

Wander SeperationCohesion Alignment

< VISION_RANGE=50 < joinThreshold=15

> seperationDistance=20

< seperationDistance=20



Lab9

WanderState

 Boid moves randomly

 State transits to CohesionState if any nearby neighbors are 
found, i.e., boid.distance(other) < VISION_RANGE

CohesionState

 Boid moves towards the center (Average Position) of all 
neighbors (< VISION_RANGE)

 State transits to AlignmentState if boid is close enough to 
midpoint, i.e., boid.distance(center) < JOIN_THRESHOLD



Lab9

AlignmentState

 Boid moves towards the average direction (Average 
Velocity) of all neighbors (< VISION_RANGE)

 State transits to SeperationState if boid is close to 
neighbors, , i.e., boid.distance(other) 
< SEPARATION_DISTANCE

 SeparationState

 Boid moves away from nearby neighbors to avoid crowding, 
i.e., boid.distance(other) < SEPARATION_DISTANCE

 State transits to WanderState if boid is separated from 
neighbors, , i.e., boid.distance(other) > 
SEPARATION_DISTANCE



Lab9



Lab9

public interface BoidState {
void applyBehavior(Boid boid, List<Boid> boids);

}

public class WanderState implements BoidState {
private static final int MAX_FORCE = 1;

@Override
public void applyBehavior(Boid boid, List<Boid> boids) {

// random wandering behavior
Random random = new Random();
int dx = random.nextInt(2 * MAX_FORCE + 1) - MAX_FORCE;
int dy = random.nextInt(2 * MAX_FORCE + 1) - MAX_FORCE;
boid.applyForce(new Point(dx, dy));



Lab9

// check for nearby boids to join a flock
for (Boid other : boids) {

if (other != boid && 
boid.getPosition().distance(other.getPosition()) 
< Boid.VISION_RANGE) {

System.out.println("boid id=" + boid.getId() + " 
state=" + boid.getState() + " changed to CohesionState");

boid.setState(new CohesionState());
return; // transition to CohesionState if nearby 

boids are found
}

}
}
@Override
public String toString() {

return "WanderState";
}

}



public class Boid {
private Point position;
private Point velocity;

…
private BoidState state;
private int id; // id is automatically assigned by count 
private static int count = 0;

public Boid(int panelWidth, int panelHeight) { 
…
this.id = ++count;
this.state = new WanderState();

} …
@Override
public String toString() {

// id, position, velocity, state
}

}

Lab9



Submit to e-learning

Add your code (e.g., other class or design pattern, etc) 
in the Lab9 assignment.

 Submit the Lab9 assignment (JAVA24-2-Lab9-YourID-
YourName.zip including the report) to e-learning due 
by 12/3.


