
State Pattern
Proxy Pattern

514770-1
Fall 2024

11/27/2024
Kyoung Shin Park

Computer Engineering
Dankook University

State Pattern

 “Allow an object to alter its behavior when its internal
state changes. The object will appear to change its
class.”

 Also known as “Objects for States”

 An object-oriented state machine

 The State pattern is used when an object changes its
behavior based on its internal state.

 In State pattern we create objects which represent
various states and a context object whose behavior
varies as its state object changes.

 The State pattern is closely related to the concept of a
Finite State Machine.

Finite State Machine

 Finite State Machine (FSM) or Finite Automata, or
simply a state machine.

 An FSM is defined by a list of its states, its initial state,
and the inputs that trigger each transition.
 States

 Inputs

 Transitions

 For example,
 Game character: walk, run, stop

 Electronic goods: on, off, sleep

 Turnstile: locked, unlocked

0
1

2

Input X = 1

Input X = 2

Input Y = 7
Input Z = 3

State Pattern

Description

Pattern State

Problem State machines are usually implemented with lots
of conditional operators (if or switch) that select
the appropriate behavior depending on the
current state of the object.

Solution The State pattern allows the object for changing
its behavior without changing its class.

Result Single Responsibility Principle, Open/Closed
Principle, Cleaner and more maintainable code

State Pattern

Define State Pattern

 Context
 Context stores a reference to one of the concrete state

objects and delegates to it all state-specific work. Context
communicates with the state object via the state interface.
Context exposes a setter for passing it a new state object.

 State
 The State interface declares the state-specific methods (what

each concrete state should do).

 ConcreteStateA, ConcreteStateB
 They provide their own implementations for state-specific

methods. To avoid duplication of similar code across multiple
states, you may provide intermediate abstract classes that
encapsulate some common behavior.

Gumball Machine (HFDP Ch. 10)

Out of
Gumballs

Has
Quarter

Gumball
Sold

No
Quarter

gumballs > 0

Finite State Machine

 Implementing state machines
 First, gather up your states:

Gumball Machine (HFDP Ch. 10)

No
Quarter

Has
Quarter

Gumball
SoldOut of

Gumballs

Gumball Machine (HFDP Ch. 10)

 Next, create an instance variable to hold the current state, and
define values for each of the states:

 Now, gather up all the actions that can happen in the system.

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

int state = SOLD_OUT;

Turns crank

Ejects quarter

Inserts quarter

dispense

Gumball Machine (HFDP Ch. 10)

 Now, create a class that acts as the state machine.

public class GumballMachine {
final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

int state = SOLD_OUT;
int count = 0;

public GumballMachine(int count) {
this.count = count;
if (count > 0) {

state = NO_QUARTER;
}

}

 Implement the actions as methods.

Gumball Machine (HFDP Ch. 10)

public void insertQuarter() {
if (state == HAS_QUARTER) {

System.out.println("You can’t insert another
quarter.");
} else if (state == SOLD_OUT) {

System.out.println("You can’t insert a quarter,
the machine is sold out.");

} else if (state == SOLD) {
System.out.println("Please wait, we’re already

giving you a gumball.");
} else if (state = NO_QUARTER) {

state = HAS_QUARTER;
System.out.println("You inserted a quarter.");

}
}

Gumball Machine (HFDP Ch. 10)

public void ejectQuarter() {
if (state == HAS_QUARTER) {

System.out.println("Quarter returned.");
state = NO_QUARTER;

} else if (state == NO_QUARTER) {
System.out.println("You haven’t inserted a

quarter.");
} else if (state == SOLD) {

System.out.println("Sorry, you already turned
the crank.");

} else if (state = SOLD_OUT) {
System.out.println("You can’t eject, you

haven’t inserted a quarter yet. ");
}

}

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
if (state == SOLD) {

System.out.println("Turing twice doesn’t get
you another gumball!");

} else if (state == NO_QUARTER) {
System.out.println("You turned, but there’s

no quarter.");
} else if (state == SOLD_OUT) {

System.out.println("You turned, but there are
no gumballs.");

} else if (state = HAS_QUARTER) {
System.out.println("You turned..");
state = SOLD;
dispense();

}
}

사례 1 뽑기 기계
public void dispense() {

if (state == SOLD) {
System.out.println("A Gumball comes rolling

out the slot.");
count = count – 1;
if (count == 0) {

System.out.println("Oops, out of gumballs!
");

state = SOLD_OUT;
} else {

state = NO_QUARTER;
}

} else if (state == NO_QUARTER) {
System.out.println("You need to pay first.");

} else if (state == SOLD_OUT) {
System.out.println("No gumball dispensed.");

} else if (state = HAS_QUARTER) {
System.out.println("No gumball dispensed.");

}
}
// other methods..

}

Gumball Machine (HFDP Ch. 10)

public class GumballMachineTestDrive {
public static void main(String[] args) {

GumballMachine gumballMachine = new
GumballMachine(5);

System.out.println(gumballMachine);

gumballMachine.insertQuarter();
gumballMachine.turnCrank();

System.out.println(gumballMachine);

gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.ejectQuarter();

System.out.println(gumballMachine);

Gumball Machine (HFDP Ch. 10)

gumballMachine.insertQuarter();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();

System.out.println(gumballMachine);
}

}

Gumball Machine (HFDP Ch. 10)

 A change request
 10% of the time, when the crank is turned, the customer gets

two gumballs instead of one.

 Be a WINNER! One in ten get a free gumball.

 First, you’d have to add a new WINNER state.

 .. But then, you’d have to add a new conditional in every single
method (insertQuater, ejectQuarter, dispense) to handle the
WINNER state –> that’s a lot of code to modify.

 turnCrank() will get especially messy, because you’d have to
add code to check to see whether you’ve got a WINNER and
then switch to either the WINNER state or the SOLD state.

Gumball Machine (HFDP Ch. 10)

 The new design
 First, define a State interface that contains a method for

every action in the Gumball Machine.

 Then, implement a State class for every state of the machine.

 Finally, get rid of all of our conditional code and instead
delegate to the state class to do the work for us.

Gumball Machine (HFDP Ch. 10)

Go to HasQuarterState

Tell the customer,
"You haven’t inserted
a quarter."

Go to SoldState

Gumball Machine (HFDP Ch. 10)

Dispense one gumball. Check
number of gumballs; if > 0, go
to NoQuarterState, otherwise,
go to SoldOutState.

Tell the customer,
"Please wait, we’re already
giving you a gumball."

Tell the customer,
"There are no gumballs."

Gumball Machine (HFDP Ch. 10)

public class NoQuarterState implements State {
GumballMachine gm;

public NoQuarterState(GumballMachine gm) {
this.gm = gm;

}

public void insertQuarter() {
System.out.println("You inserted a quarter.");
gm.setState(gm.getHasQuarterState());

}

public void ejectQuarter() {
System.out.println("You haven’t inserted a

quarter.");
}

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("You turned, but there’s no

quarter.");
}

public void dispense() {
System.out.println("You need to pay first.");

}
}

Gumball Machine (HFDP Ch. 10)

 Reworking the Gumball Machine
 Switch the code from the state related instance variables

using integers to using state objects.

public class GumballMachine {
State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

State state = soldOutState;
int count = 0;

public GumballMachine(int numberGumballs) {
soldOutState = new SoldOutState(this);
noQuarterState = new NoQuarterState(this);
hasQuarterState = new HasQuarterState(this);
soldState = new SoldState(this);

Gumball Machine (HFDP Ch. 10)

this.count = numberGumballs;
if (numberGumballs > 0) {

state = noQuarterState;
}

}
public void insertQuarter() {

state.insertQuarter();
}
public void ejectQuarter() {

state.ejectQuarter();
}
public void turnCrank() {

state.turnCrank();
state.dispense();

}
void setState(State state) {

this.state = state;
}

Gumball Machine (HFDP Ch. 10)

void releaseBall() {
System.out.println("A gumball comes rolling out

the slot…");
if (count != 0) {

count = count – 1;
}

}

// more methods including getters for each State
}

Gumball Machine (HFDP Ch. 10)

 Implementing HasQuarterState

public class HasQuarterState implements State {
GumballMachine gm;

public HasQuarterState(GumballMachine gm) {
this.gm = gm;

}

public void insertQuarter() {
System.out.println("You can’t insert another

quarter.");
}

public void ejectQuarter() {
System.out.println("Quarter returned.");
gm.setState(gm.getNoQuaterState());

}

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("You turned..");
gm.setState(gm.getSoldState());

}

public void dispense() {
System.out.println("No gumball dispensed.");

}
}

Gumball Machine (HFDP Ch. 10)

 Implementing SoldState

public class SoldState implements State {
GumballMachine gm;

public SoldState(GumballMachine gm) {
this.gm = gm;

}

public void insertQuarter() {
System.out.println("Please wait, we’re already

giving you a gumball.");
}

public void ejectQuarter() {
System.out.println("Sorry, you already turned

the crank.");
}

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("Turing twice doesn’t get you

another gumball!");
}

public void dispense() {
gm.releaseBall();
if (gm.getCount() > 0) {

gm.setState(gm.getNoQuarterState());
} else {

System.out.println("Oops, out of gumballs!");
gm.setState(gm.getSoldOutState());

}
}

}

Gumball Machine (HFDP Ch. 10)

 Implementing SoldOutState

public class SoldOutState implements State {
GumballMachine gm;

public SoldOutState(GumballMachine gm) {
gm = gm;

}

public void insertQuarter() {
System.out.println("You can’t insert a quarter,

the machine is sold out.");
}

public void ejectQuarter() {
System.out.println("You can’t eject, you haven’t

inserted a quarter yet.");
}

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("You turned, but there are no

gumballs!");
}

public void dispense() {
System.out.println("No gumball dispensed.");

}
}

Gumball Machine (HFDP Ch. 10)

 In State pattern, states are class.

 It gets rid of if-statements.

 State machine is open to extensions that add new
state classes, such as Winner State.

Gumball Machine (HFDP Ch. 10)

Out of
Gumballs

Has
Quarter

Gumball
Sold

No
Quarter

gumballs > 0

Winner

Turns crank
rand=0

gumball = 0

gumballs > 0

Dispense

Gumball Machine (HFDP Ch. 10)

 To make a gumball machine that gives you an extra
gumball every ten times

public class WinnerState implements State {
GumballMachine gm;

public WinnerState(GumballMachine gm) {
this.gm = gm;

}

public void insertQuarter() {
System.out.println("Please wait, we’re already

giving you a Gumball.");
}

public void ejectQuarter() {
System.out.println("Please wait, we’re already

giving you a Gumball.");
}

Gumball Machine (HFDP Ch. 10)public void turnCrank() {
System.out.println("Turning again doesn’t get you

another Gumball!");
}

public void dispense() {
gm.releaseBall();
if (gm.getCount() == 0) {

gm.setState(gm.getSoldOutState());
} else {

gm.releaseBall();
System.out.println("YOU’RE A WINNER! You got

two gumballs for your quarter.");
if (gm.getCount() > 0) {

gm.setState(gm.getNoQuarterState());
} else {

System.out.println("Oops, out of gumballs!");
gm.setState(gm.getSoldOutState());

}
}

}

Gumball Machine (HFDP Ch. 10)

 Reworking HasQuarterState

public class HasQuarterState implements State {
Random random = new Random(

System.currentImeMillis());
public void turnCrank() {

System.out.println("You turned...");
int winner = random.nextInt(10);
if ((winner == 0)

&& (gumballMachine.getCount() > 1)) {
gumballMachine.setState(

gumballMachine.getWinnerState());
} else {

gumballMachine.setState(
gumballMachine.getSoldState());

}
}

}

Proxy Pattern

 “Provide a surrogate or placeholder for another
object to control access to it.”

 A proxy controls access to the original object, allowing
you to perform something either before or after the
request gets through to the original object.

Proxy Pattern

 Used for access control
 "A class functioning as an interface to something else“

 Processing on behalf of the object to be used

 A branch processes work on behalf of the head office of a bank

 Calling a remote object on the server (calling an object on a
different JVM)

 A stub on the client side is a proxy.

 Acting as a proxy for the stub

 Processing the client's request for a remote object on the server
locally.

 The client must have permission to request processing.

Proxy Pattern

 Remote proxy
 A proxy that is created on the local JVM on behalf of a

remote object in a distributed network environment

 The proxy receives a request and connects to an object in
another remote JVM

 Virtual proxy
 When an object is needed, a virtual proxy is created and used

 Image proxy (until loading, use icon)

 Protection proxy
 Invocation handler

Proxy Pattern

Description

Pattern Proxy

Problem The object you want to use is far away, busy, large,
or difficult to use directly

Solution Create a proxy object

Result Decoupling of request and processing; Reducing
the load on the object you actually want to use;
Implementation becomes complex

Coding the Monitor (HFDP Ch. 11)

 New requirements to Gumball Machine
 Want to know the stock and current status of all gumball machine

 Also need to include the location of gumball machine

public class GumballMachine {
// other instance variables
String location;

public GumballMachine(String location, int count) {
// other constructor code here
this.location = location;

}
public String getLocation() {

return location;
}
// other methods here …

}

Coding the Monitor (HFDP Ch. 11)

 GumballMonitor
 reports the location of the gumball machine, the inventory of

gumballs, and the current machine state.

public class GumballMonitor {
GumballMachine machine;
public GumballMonitor(GumballMachine machine) {

this.machine = machine;
}
public void report() {

System.out.println("Location:" +
machine.getLocation());

System.out.println("Inventory:" +
machine.getCount());

System.out.println("Current State:" +
machine.getState());

}
}

Testing the Monitor (HFDP Ch. 11)

public class GumballMachineTestDrive {
public static void main(String[] args) {

int count = 0;
if (args.length < 2) {

System.out.println("GumballMachine <name>
<inventory>");

System.exit(1);
}
count = Integer.parseInt(argv[1]);
GumballMachine machine = new

GumballMachine(args[0], count);
GumballMonitor monitor = new

GumballMonitor(gumballMachine);
// rest if test code here..
monitor.report();

}
}

Remote Proxy

 Remote Proxy
 A local representative for a remote object

 Remote Object

 An object in another JVM (an object running in a different
address space)

 Local Representative

 When a method of a local representative is called, it forwards the
method call to another remote object.

Remote Proxy

GumballMonitor
Proxy

GumballMachine

Computer A Computer B

 The client object acts as if it is calling a method on a
remote object, but in reality it is calling a method on a
"proxy" object that is stored on the local heap.

 The low-level tasks related to network communication are
handled by this proxy object.

RMI(Remote Method Invocation)

Client Heap
Server Heap

Java RMI

Remote Service

 Create a remote interface
 Define the methods that the client calls remotely

 Create a service implementation class
 Actually implement the functions that are called remotely

 Run the RMI registry
 Phonebook

 Start the remote service
 Create a service object and register it in the RMI registry

Remote Interface

 Create Remote Interface
 Extends java.rmi.Remote

 Declare all methods as throwing RemoteException

 The arguments and return values ​​of remote methods
must be declared as primitive or Serializable types.
 If you pass a class you created yourself, implement the Serializable

interface.

public interface MyRemote extends Remote { … }

import java.rmi.*;

public interface MyRemote extends Remote {
public String sayHello() throws RemoteExcepetion;

}

Service Implementation

 Implementing a remote interface

 Create a stub object using the

UnicastRemoteObject.exportObject() function

 Get the registry by calling the LocateRegistry.getRegistry()

function

 Register the stub by name using the rebind() or bind()

function

public class MyRemoteImpl implements MyRemote {
public String sayHello() {

return "Server says, 'Hey'";
}
// …

}

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class MyRemoteImpl implements MyRemote {
public String sayHello() {
return "Server says, 'Hey'";

}

public static void main(String[] args) {
try {
MyRemote stub = (MyRemote)

UnicastRemoteObject.exportObject(new MyRemoteImpl(), 0);
Registry registry = LocateRegistry.getRegistry();
registry.rebind("RemoteHello", stub);

}
catch (Exception e) { e.printStackTrace(); }

}
}

The Remaining Staps

 Run rmiregistry
 Must be run from the directory where the service implementation

class is located.

 Run service

> rmiregistry

> java MyRemoteImpl

Client Class

 Get the registry using LocateRegistry.getRegistry()

 Search for the service name in the registry and get the
stub

 Call the function using the stub

Client Class

import java.rmi.*;
import java.rmi.registry.*;

public class MyRemoteClient {
public static void main(String[] args) {
try {
Registry registry = LocateRegistry.getRegistry();
MyRemote stub = (MyRemote)

registry.lookup("RemoteHello");
System.out.println(stub.sayHello());

}
catch (Exception e) {
e.printStackTrace();

}
}

}

GumballMachine as a Remote Service

 Write a remote interface for GumballMachine

 Make sure all return types in the interface are
serializable

 Implement the interface in your class

import java.rmi.*;

public interface GumbalMachineRemote extends Remote {
public int getCount() throws RemoteException;
public String getLocation() throws RemoteException;
public State getState() throws RemoteException;

}

GumballMachine as a Remote Service

 Modify State to be Serializable

import java.io.*; // Serializable

public interface State extends Serializable {
public void insertQuarter();
public void ejectQuarter();
public void turnCrank();
public void dispense();

}

GumballMachine as a Remote Service

 Modify the State Implementation class

public class NoQuarterState implements State {
private static final long serialVersionUID = 2L;
transient GumballMachine gumballMachine;

// rest of the code…
}

GumballMachine Remote Proxy Work

Proxy Pattern

 Proxy Pattern
 A pattern that provides an object that acts as a proxy or

representative for the purpose of controlling access to an
object.

Virtual Proxy

 Virtual Proxy
 A proxy for objects that are expensive to create

 Also provide the ability to postpone the creation of objects
until the real object is needed.

 Also, act as a proxy for objects before or during object
creation

CD Cover Viewer

 Let's say you want to create a CD title menu and show
images from the internet.

 The virtual proxy handles the task of fetching images
in the background, and displays a message like
"Loading CD cover, please wait…" until the images are
fetched.

class ImageProxy implements Icon {
ImageIcon imageIcon;
URL imageURL;
Thread rtThread;

public ImageProxy(URL url) { imageURL = url; }
public int getIconWidth() {
if (imageIcon != null) {
return imageIcon.getIconWidth();

}
else { return 800; }

}

public int getIconHeight() {
if (imageIcon != null) {
return imageIcon.getIconHeight();

}
else { return 800; }

}

public void paintIcon(final Component c, Graphics g,
int x, int y) {

if (imageIcon != null) {
imageicon.paintIcon(c, g, x, y);

}
else {
g.drawstring("Loading CD cover, please wait…",

x + 300, y + 190);
if (!retrieving) {
retrieving = true;
rtThread = new Thread(new Runnable() {
public void run() {
try {
imageIcon = new ImageIcon(imageURL, "CD

Cover");
c.repaint();

}
catch (Exception e) { e.printStackTrace(); }

});
rtThread.start();

} } } }

class ImageProxyTestDrive {
ImageComponent imageComponent;
public static void main(String[] args) {
ImageProxyTestDrive t = new ImageProxyTestDrive();

}

public ImageProxyTestDrive() throws Exception {
// frame
// menu
// …
Icon icon = new ImageProxy(initialURL);
imageComponent = new ImageComponent(icon);
frame.getContentPane().add(imageComponent);

}
}

Other Proxy

 Smart Reference Proxy
 Provide additional behavior whenever the primacy object is

referenced

 Example: Counting the number of references to an object

 Caching Proxy
 Temporarily stores the results of expensive operations

 Can reduce computation time or network latency by allowing
multiple clients to share the results

