
Command Pattern

514770-1
Fall 2024
11/5/2024

Kyoung Shin Park
Computer Engineering

Dankook University

Command Pattern

 “Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or
log requests, and support undoable operations.”

 Promote “invocation of a method on an object” to full
object status

 Also known as “an object-oriented callback”

 Command pattern is useful for “undo” operations.

 All implementations of java.lang.Runnable interface and
All implementations of javax.swing.Action interface are
good examples of how the command pattern is
implemented.

Design Problem

 Suppose you are building a home automation system.
 There is a programmable remote controller which can be used

to turn on and off various items in your home like light,
stereo, AC etc.

 Items have different APIs

 Garage door up()

 Light on()

 TV pressOn()

 …

Design Problem

 How the Diner operates:
 The customer give the waitress your order.

 The waitress takes the order, place it on the order counter
and says “Order up!”

 The cook prepares your meal from the order.

Objectville Diner (HFDP Ch. 6)

Customer

Order

Waitress

Cook
Meal

Objectville Diner (HFDP Ch. 6)

 Let’s think about the object and method calls.

CustomerOrder

Waitress

Cook

createOrder()

takeOrder()

orderUp()

makeBurger()
makeShake()

Meal

Objectville Diner (HFDP Ch. 6)

Objectville Diner (HFDP Ch. 6)

 Order
 Order is an object that acts as a request to prepare a meal.

 It can be passed around from Waitress to the order counter or
to the next Waitress.

 It has an interface that consists of only one method, orderUp().

 orderUp() encapsulates the actions needed to prepare the meal.

 It also has a reference to the object that needs to prepare it (in
this case, the Cook).

 Waitress
 Waitress’s job is to take the Order from the Customer, then

invoke the orderUp() method to have the meal prepared.

 Waitress really isn’t worried about what’s on the Order or who
is going to prepare it.

 Waitress’s takeOrder() method gets parameterized with different
order from different customers.

Objectville Diner (HFDP Ch. 6)

 Cook
 The Cook is the object that really knows how to prepare the

meal.

 Notice the Waitress and the Cook are totally decoupled; the
Waitress has the Order that encapsulate the details of the meal;
she just calls a method on each order to get it prepared; the
Cook gets his instructions from the Order; he never needs to
directly communicate with the Waitress.

 The Waitress has invoked the orderUp(); The Cook takes over
and implements all the methods that are needed to create
meals.

 In our remote control API, we need to separate the
code that gets invoked when we press a button from
the objects of the vendor-specific classes that carry out
those requests.

Command Pattern

Description

Pattern Command

Problem The object APIs do not follow a regular pattern (e.g. camera
start/stop recording, light on/off, speaker volume up/down).

Solution Separate execution and request. The command object
contains all the details needed to execute the request.

Result It creates more (small) classes, but removes and hides the
complexity of using objects (the method name becomes the
same).

Command Pattern

Define Command Pattern

 Command
 Defines an interface for executing an operation or set of

operations.

 ConcreteCommand
 Implements the Command interface to perform the

operations. Typically acts as an intermediary to a Receiver
object.

 Command knows Receiver, and calls Receiver method

 Command contains the values of parameters used in Receiver
method.

 Receiver
 Perform the command operations

 Example: Light on/off, GarageDoor open/close

Define Command Pattern

 Invoker
 Invoker receives a request and bind the Command interface to

execute the request.

 Invoker knows only the Command interface. It doesn’t know
how the command actually works.

 Example: RemoteControl

 Client
 Client decides what to request and pass the request command

to the Invoker.

 Example: main() method

 Decoupling

Design

Object Description Diner Remote Control

Client Create the
command object
and set its receiver

Client Recognize the function of
the remote control button
and press the button

Command Define a binding
between an action
and a receiver

Order Connect the actual object
(TV, light, etc) to the button

Invoker Connect the
Command interface
to take order and
execute

Waitress Press the remote control
button to execute the
function

Receiver Perform an action Cook Actual objects such as TV,
light, etc

Objectville Dinner and Command Pattern

Client

execute()

Command

createCommandObject()

setCommand()

Invoker

setCommand()

execute()

Command

execute()

Receiver

action1()
action2()

action1(),
action2()

①

②

③

createCommandObject()

Define Command Object

 Implementing the Command interface
 All command objects implement the same interface, which

consists of one method.

 In the Dinner, we called this method orderUp().

 Typically, we just use the method execute().

public interface Command {
void execute();

}

Define Command Object

 Implementing a Command to turn a light on
 The Light class has two methods, on() and off().

public class LightOnCommand implements Command {
Light light; // specific light that is going

to be the Receiver of the request

public LightOnCommand(Light light) {
this.light = light;

}

public void execute() {
light.on();

}
}

Use Command Object

 Let’s say we’ve got a remote control with only one
button and corresponding slot to hold a device to
control.

public class SimpleRemoteControl {
Command slot;

public SimpleRemoteControl() {}
public void setCommand(Command command) {

slot = command;
}
public void buttonWasPressed() {

slot.execute();
}

}

RemoteControlTest

 SimpleRemoteControlTest

public class RemoteControlTest {
public static void main(String[] args) {

SimpleRemoteControl remote
= new SimpleRemoteControl();

Light light = new Light();
LightOnCommand lightOn

= new LightOnCommand(light);
remote.setCommand(lightOn);
remote.buttonWasPressed();

}

 If you want to add GarageDoor

RemoteControlTest

public class RemoteControlTest {
public static void main(String[] args) {

SimpleRemoteControl remote
= new SimpleRemoteControl();

Light light = new Light();
LightOnCommand lightOn

= new LightOnCommand(light);
GarageDoor garageDoor = new GarageDoor();
GarageDoorOpenCommand garageOpen

= new GarageDoorOpenCommand(garageDoor);
remote.setCommand(lightOn);
remote.buttonWasPressed();
remote.setCommand(garageOpen);
remote.buttonWasPressed();

}

 Command object
 A command object encapsulates a request by binding

together a set of actions on a specific receiver.

 To achieve this, it packages the actions and the receiver up
into an object that exposes just one method, execute().

 When called, execute() causes the actions to be invoked on
the receiver.

 From the outside, no other objects really know what actions
get performed on what receiver; they just know that if they
cal the execute() method, their request will be served.

Command Pattern Defined

action()

execute() {
receiver.action();

}

Receiver

Command

 Parameterizing an object with a command
 In the Diner, the Waitress was parameterized with multiple

orders throughout the day.

 In the simple remote control, we first loaded the button slot
with a “light on” command, and then later replaced it with a
“garage door open” command.

 Invoker(Waitress or remote control) doesn’t need to
know what actually happens in the command object,
as long as it has a specific interface implemented.

Command Pattern Defined

RemoteSlot

execute()

execute()

execute()

execute()

StereoOff

GarageDoorOpen

CeilingFanHigh

LightOnCommand

Command Pattern Defined

public class RemoteControl {
Command[] onCommands;
Command[] offCommands;

public RemoteControl() {
onCommands = new Command[7];
offCommands = new Command[7];
Command noCommand = new NoCommand();
for (int i = 0; i < 7; i++) {

onCommands[i] = noCommand;
offCommands[i] = noCommand;

}
}
public void setCommand(int slot,

Command onCommand, Command offCommand) {
onCOmmands[slot] = onCommand;
offCommands[slot] = offCommand;

}

Command Pattern Defined

public void onButtonWasPushed(int slot) {
onCommands[slot].execute();

}
public void offButtonWasPushed(int slot) {

offCommands[slot].execute();
}
public String toString() {

StringBuffer stringBuff = new StringBuffer();
stringBuff.append("\n------ Remote Control --

----\n");
for (int i = 0; i < onCommands.length; i++) {

stringBuff.append("[slot " + i + "] " +
onCommands[i].getClass().getName() + " " +
offCommands[i].getClass().getName() + "\n");

}
return stringBuff.toString();

}
}

커맨드 클래스

public class LightOffCommand implements Command {
Light light;
public LightOffCommand(Light light) {

this.light = light;
}
public void execute() {

light.off();
}

}

public class StereoOnWithCDCommand
implements Command {

Stereo stereo;
public StereoOnWithCDCommand(Stereo stereo) {

this.stereo = stereo;
}
public void execute() {

stereo.on();
stereo.setCD();
stereo.setVolume(11);

}
}

RemoteControlTest

public class RemoteLoader {
public static void main(String[] args) {
RemoteControl remoteControl = new RemoteControl();
Light livingRoomLight = new Light("Living Room");
Light kitchenLight = new Light("Kitchen");
Stereo stereo = new Stereo("Living Room");
LightOnCommand livingRoomLightOn =

new LightOnCommand(livingRoomLight);
LightOffCommand livingRoomLightOff =

new LightOffCommand(livingRoomLight);
LightOnCommand kitchenLightOn =

new LightOnCommand(kitchenLight);
LightOffCommand kitchenLightOff =

new LightOffCommand(kitchenLight);
StereoOnWithCDCommand stereoOnWithCD =

new StereoOnWithCDCommand(stereo);
StereoOffWithCDCommand stereoOff =

new StereoOffCommand(stereo);

RemoteControlTest
remoteControl.setCommand(0,

livingRoomLightOn, livingRoomLightOff);
remoteControl.setCommand(1,

kitchenLightOn, kitchenLightOff);
remoteControl.setCommand(3,

stereoOnWithCD, stereoOff);
System.out.println(remoteControl);
remoteControl.onButtonWasPushed(0);
remoteControl.offButtonWasPushed(0);
remoteControl.onButtonWasPushed(1);
remoteControl.offButtonWasPushed(1);
remoteControl.onButtonWasPushed(3);
remoteControl.offButtonWasPushed(3);

}
}

public class NoCommand implements Command {
public void execute() {}

}

Adding Undo

public interface Command {
public void execute();
public void undo();

}

public class LightOnCommand implements Command {
Light light; // light is Receiver

public LightOnCommand(Light light) {
this.light = light;

}
public void execute() {

light.on();
}
public void undo() {

light.off();
}

}

Adding Undo

public class LightOffCommand implements Command {
Light light;
public LightOffCommand(Light light) {

this.light = light;
}
public void execute() {

light.off();
}
public void undo() {

light.on();
}

}

Command Pattern Define

public class RemoteControlWithUndo {
Command[] onCommands;
Command[] offCommands;
Command undoCommand;

public RemoteControlWithUndo() {
onCommands = new Command[7];
offCommands = new Command[7];
Command noCommand = new NoCommand();
for (int i = 0; i < 7; i++) {

onCommands[i] = noCommand;
offCommands[i] = noCommand;

}
undoCommand = noCommand;

}

public void setCommand(int slot,
Command onCommand, Command offCommand) {

onCOmmands[slot] = onCommand;
offCommands[slot] = offCommand;

}
public void onButtonWasPushed(int slot) {

onCommands[slot].execute();
undoCommand = onCommands[slot];

}
public void offButtonWasPushed(int slot) {

offCommands[slot].execute();
undoCommand = offCommands[slot];

}
public void undoButtonWasPushed() {

undoCommand.undo();
}
public String toString() {

// rest of code…
}

}

public class RemoteLoader {
public static void main(String[] args) {
RemoteControlWithUndo remoteControl = new

RemoteControlWithUndo();
Light livingRoomLight = new Light("Living Room");
LightOnCommand livingRoomLightOn =

new LightOnCommand(livingRoomLight);
LightOffCommand livingRoomLightOff =

new LightOffCommand(livingRoomLight);
remoteControl.setCommand(0, livingRoomLightOn,

livingRoomLightOff);

remoteControl.onButtonWasPushed(0);
remoteControl.offButtonWasPushed(0);
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();
remoteControl.offButtonWasPushed(0);
remoteControl.onButtonWasPushed(0);
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();

}
}

Adding Undo for Ceiling Fan Command
public class CeilingFan {

public static final int HIGH = 3;
public static final int MEDIUM = 2;
public static final int LOW = 1;
public static final int OFF = 0;
String location;
int speed;
public CeilingFan(String location) {

this.location = location;
speed = OFF;

}
public void high() {

speed = HIGH; // set speed to HIGH
}
public void medium() { speed = MEDIUM; }
public void low() { speed = LOW; }
public void off() { speed = OFF; }
public int getSpeed() { return speed; }

}

Adding Undo for Ceiling Fan Command

public class CeilingFanHighCommand implements
Command {
CeilingFan ceilingFan;
int prevSpeed;

public CeilingFanHighCommand(CeilingFan
ceilingFan) {

this.ceilingFan = ceilingFan;
}
public void execute() {

prevSpeed = ceilingFan.getSpeed();
ceilingFan.high();

}

Adding Undo for Ceiling Fan Command

public void undo() {
if (prevSpeed == CeilingFan.HIGH) {

ceilingFan.high();
} else if (prevSpeed == CeilingFan.MEDIUM) {

ceilingFan.medium();
} else if (prevSpeed == CeilingFan.LOW) {

ceilingFan.low();
} else if (prevSpeed == CeilingFan.OFF) {

ceilingFan.off();
}

}
}

RemoteControlWithUndoTest

public class RemoteControlWithUndoTest {
public static void main(String[] args) {
RemoteControlWithUndo remoteControl

= new RemoteControlWithUndo();
CeilingFan ceilingFan

= new CeilingFan("Living Room");
CeilingFanMediumCommand ceilingFanMedium =

new CeilingFanMediumCommand(ceilingFan);
CeilingFanHighCommand ceilingFanHigh =

new CeilingFanHighCommand(ceilingFan);
CeilingFanOffCommand ceilingFanOff =

new CeilingFanOffCommand(ceilingFan);
remoteControl.setCommand(0, ceilingFanMedium,

ceilingFanOff);
remoteControl.setCommand(1, ceilingFanHigh,

ceilingFanOff);

RemoteControlWithUndoTest

remoteControl.onButtonWasPushed(0); // medium
remoteControl.offButtonWasPushed(0); // medium off
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();// medium again
remoteControl.onButtonWasPushed(1); // high
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();// medium again

}
}

MacroCommand

 Add the macro command that darkens the light by
pressing a button, turns on audio and TV, changes to
DVD mode, and even fills the bathtub with water.

public class MacroCommand implements Command {
Command[] commands;
public MacroCommand(Command[] commands) {
this.commands = commands;

}
public void execute() {
for (int i = 0; i < commands.length; i++) {
commands[i].execute();

}
}

}

MacroCommand

Light light = new Light("Living Room");
TV tv = new TV("Living Room");
Stereo stereo = new Stereo("Living Room");
Hottub hottub = new Hottub();
LightOnCommand lightOn = new LightOnCommand(light);
StereoOnCommand stereoOn = new
StereoOnCommand(stereo);
TVOnCommand tvOn = new TVOnCommand(tv);
HottubOnCommand hottubOn = new
HottubOnCommand(hottubOn);

MacroCommand

Command[] partyOn = {lightOn, stereoOn, tvOn,
hottubOn};
Command[] partyOff = {lightOff, stereoOff, tvOff,
huttubOff};
MacroCommand partyOnMacro = new
MacroCommand(partyOn);
MacroCommand partyOffMacro = new
MacroCommand(partyOff);
remoteControl.setCommand(0, partyOnMacro,
partyOffMacro);

remoteControl.onButtonWasPushed(0);
remoteControl.offButtonWasPushed(0);

