
Managing Dynamic Shared State

448430
Spring 2009
3/30/2009

Kyoung Shin Park
Multimedia Engineering

Dankook University

Overview

Dynamic Shared State
Consistency-Throughput Tradeoff
Centralized/Shared Repository
Frequent State Regeneration (Blind Broadcast)
Dead Reckoning

What is Dynamic Shared State?

The dynamic information that multiple hosts must
maintain about the NVE
Accurate dynamic shared state is fundamental to
creating realistic virtual environments. It is what makes
a NVE “multi-user”.
Management is one of the most difficult challenges
facing the net-VE designer. The trade off is between
resources and realism.

Network Latency Problem

Player A Sends Update Here

Player B

Player A is here
100 ms later

Update arrives after
100 ms

Consistency-Throughput Tradeoff

“It is impossible to allow
dynamic shared state to
change frequently and
guarantee that all hosts
simultaneously access
identical versions of that
state.”
We can have either a
dynamic world or a
consistent world, but not
both.

Reliable (Gets there)

Scalable
(Group size)

Real-time
(On time)

Another Example

Player A moves and generates a location update.
To ensure consistency, player A must await
acknowledgments.
If network lag is 100 ms, acknowledgment comes no
earlier than 200 ms.
Therefore, player A can only update his state 5 times per
second.

Design Implications

For a highly dynamic shared state, hosts must transmit
more frequent data updates.
To guarantee consistent views of the shared state, hosts
must employ reliable data delivery.
Available network bandwidth must be split between
these two constraints.

Tradeoff Spectrum

System
Characteristic

View consistency

Dynamic data support

Network infrastructure
requirements

Number of participants
supported

Absolute
Consistency

Identical at all host

Low: Limited by
consistency protocol

Low latency, high
reliability, limited
variability

Low

High Update Rate

Determined by data
received at each host

High: Limited only by
available bandwidth

Heterogeneous network
possible

Potentially high

Managing Shared States

Shared Repositories Blind Broadcast Dead Reckoning

Techniques

More DynamicMore Consistent

Maintain shared state data in a centralized location.
Protect shared states via a lock manager to ensure
ordered writes.
Three Techniques

Shared File Directory
Repository in Server Memory
Distributed Repository (Virtual Repository)

Centralized / Shared Repositories

Shared File Directory

Absolute Consistency!
Only one host can write data to the same file at a time.
Must have locks.
Slow!
Does not support many users.

Shared File Directory

Centralized
Data Store

state

state
state

state

Update

ReadRead

Update

User

User

User User

User

User
Synchronization
Locks

Server Memory

Faster than Shared File Directory because each host uses
does not have to open and close each file remotely.
Don’t have to have locks. Server arbitrates.
Server crash is catastrophic.
Maintaining constant connection may strain server
resources.

Server Memory

Centralized
Server

state
state

state
state

Update

ReadRead

Update

User

User

User User

User

UserServer
Arbitrates
Requests

Virtual Repository

Tries to reduce bottleneck at server.
Hosts communicate directly to each other following a
protocol of information sharing. (can even tailor who
you talk to).
Better fault tolerance (Depending on protocol creating
the “virtual files”)
Eventual Consistency.

Virtual Repository

Advantages of Centralized/ Shared
Repositories

Provides an easy programming model.
Guarantees information consistency.
No sense of data ownership is imposed; any host can
update any piece of the shared state.

Disadvantages of Shared Repositories

Data access and update operations require an
unpredictable amount of time to complete.
Requires considerable communications overhead due to
reliable data delivery.
Vulnerable to single point failure.
Push systems may send info where it is not needed.
Limited number of users (else you overload the server or
the network)
One slow user can drag everyone down.

Frequent State Regeneration/Blind Broadcasts

Owner of each state transmits the current value
asynchronously and unreliably at regular intervals.
Clients cache the most recent update for each piece of
the shared state.
Hopefully, frequent state update compensate for lost
packets.
No assumptions made on what information the other
hosts have.
Broadcast is sent “blind” to everyone.
Usually the entire entity state is sent.
No acknowledgements
No assurances of delivery
No ordering of updates.

Why use?

Can’t afford overhead of centralized repository
May not have demanding consistency requirements

Explicit Object Ownership

With blind broadcasts, multiple hosts must not attempt
to update an object at the same time.
Each host takes explicit ownership of one piece of the
shared state (usually the user’s avatar).
To update an un-owned piece of the shared state, either
proxy updates or ownership transfer is employed.
Unlike “locks” in Shared Filed servers, multiple updates
are allowed until ownership is transferred
Commonly used in online gaming (DOOM, Diablo), tele-
surgery, and in trying to simulate video conferencing.

Explicit Object Ownership Gaining
Ownership

Lock
Manager

Request
Ball Lock Request

Ball Lock

Grant Ball
Lock

Reject
Ball Lock

Update Ball Position

HOST A
HOST B

Explicit Object Ownership Proxy Update

Lock
Manager

Request
Ball Lock

Grant Ball
Lock

Update Ball Position

Request Update Ball
Position

Update Ball Position [per Host
B]

HOST A
HOST B

Explicit Object Ownership Transferring
Ownership

Lock
Manager

Notify
Lock
Transfer

Acknowledge
Lock Transfer

HOST A
HOST B

Update Ball Position [per Host B]

Update Ball Position

Request Ball Ownership

Grant Ball Ownership

Reducing Broadcast Scope

Each host sends updates to all participants in the NVE.
Reception of extraneous updates consumes bandwidth
and CPU cycles.
Need to filter updates, perhaps at a central server (e.g.
RING system) which forwards updates only to those
who can “see” each other.
VEOS - epidemic approach- each host send info to
specific neighbors.

Advantages of Blind Broadcasts

Simple to implement; requires no servers, consistency
protocols or a lock manager (except for filter or shared
items)
Can support a larger number of users at a higher frame
rate and faster response time.

Disadvantages of Blind Broadcasts

Requires large amount of bandwidth.
Network latency impedes timely reception of updates
and leads to incorrect decisions by remote hosts.
Network jitter impedes steady reception of updates
leading to ‘jerky’ visual behavior.
Assumes everyone broadcasting as the same rate which
may be noticeable to users if it is not the case (this may
be very noticeable between local users and distant
destinations).

Dead Reckoning Protocols

Transmit state updates less frequently by using past
updates to estimate the true shared state.
Prediction

How the object’s current state is computed based on previously
received packets.
Each host estimates entity locations based on past data.

Convergence
How the object’s estimated state is corrected when another
update is received.

No need for central server.
Sacrifices accuracy of shared state for more participants.

Dead Reckoning Illustration

Current Position

Predicted Position

Updated Position

Convergence
Time
(y)

Time
(z)

Time
(y)

Time
(x)

Prediction Using Derivative Polynomials

Zero Order (simplest)
x(t + Δt) = x(t) (really state regeneration-assumes

the object doesn’t move)
First Order (velocity)

x(t + Δt) = x(t) + vxΔt
Second Order (acceleration)

x(t + Δt) = x(t) + vxΔt + ax(Δt)2

Higher Order Approximations

Hybrid Polynomial Prediction

Need not be absolute
Instead of using a fixed prediction scheme, dynamically
choose between first or second order based on object’s
history.
Use first order when acceleration is negligible or
acceleration information is unreliable (changes
frequently).

Hybrid Polynomial Prediction

Position History-Based Dead Reckoning Protocol
(PHBRR) - only included position. Required the host
machine to calculate velocity and acceleration based on
past positions.
Actually more accurate as “snapshot” velocities and
accelerations can be misleading.

Limitations of Derivative Polynomials

Why not use more terms?
greater bandwidth required
greater computational complexity
less accurate prediction since higher order terms are harder to
estimate and errors have disparate impact

Do not take into account capabilities or limitations of
objects.

Object Specialized Prediction

Object behavior may simplify prediction scheme.
A plane’s orientation angle is determined solely by its
forward velocity and acceleration.
Land based objects need only two dimensions specified.

Object Specialized Prediction

Desired level of detail - often do not need to be precise
with some aspects. Do we have to accurately model the
flicker of the flames of a burning vehicle or is it enough
to say it is on fire.
The same with smoke. Some VEs need to accurately
model smoke, other do not.

Tells us what to do to correct an inexact prediction:

Trade-off between computational complexity and
perceived smoothness of displayed entities

Convergence Algorithms

Current Position

Predicted Position

Updated Position

Prediction Error

Convergence Algorithms

Zero order or snap convergence
Advantage: Simple
Disadvantage: Poorly models real world & “Jumping”
entities may distract users.

Predicted Position

Updated Position

Convergence Algorithms

Linear Convergence
Advantage: Avoids jumping
Disadvantage: Does not prevent “sudden” or unrealistic
changes in speed or direction.

Predicted Track

Updated Track

Covergence Path

Convergence Algorithms

Cubic Spline
Advantage: Smoothest looking convergence
Disadvantage: Computationally expensive

Updated Track

Predicted Track

Covergence Path

T-1

T

CC+1

Convergence Algorithms

Choice of convergence algorithm may vary within a
VE depending on the entity type and characteristics.
Hybrids may be used (PHBRR)

Non-Regular Updates

Slow update rate if prediction at remote host is within an
error tolerance.
The source host models the prediction algorithm used by
the remote hosts.
Only transmit an update when an error threshold is
reached or after a timeout period (heartbeat).
Entities must have a “heartbeat” otherwise cannot
distinguish between live entities and ones that have left
the system.

Advantages of Dead Reckoning

Reduces bandwidth requirements because updates are
sent less frequently.
Potentially larger number of players.
Each host does independent calculations

Disadvantages of Dead Reckoning

Not all hosts share the identical state about each entity.
Protocols are more complex to implement to develop,
maintain and evaluate.
Must customize for object behavior to achieve best
results.
Must have convergence to cover prediction errors.
Collision detection difficult to implement.
Poor convergence methods lead to jerky movements and
distract from immersion.

Conclusions

Shared state maintenance is governed by the Consistency
- Throughput Tradeoff.
Three broad types of maintenance:

Centralized/Shared repository
Frequent State Regeneration(Blind Broadcast)
Dead Reckoning

The correct choice relies on balancing many issues
including bandwidth, latency, data consistency,
reproducibility, and computational complexity.

