
A Networking Primer

448430
Spring 2009
3/23/2009

Kyoung Shin Park
Multimedia Engineering

Dankook University

Outline

Network Latency
Network Bandwidth
Network Reliability
Network Protocol

BSD Sockets & Internet
Protocol

TCP/IP
UDP/IP
IP Multicasting

Network Latency
Network Bandwidth
Network Reliability

Amount of time required to transfer a bit of data from
one point to another
Delay of transfer
Reasons for network latency

speed of light delays (8.25ms of delay per time zone)
delays from the computers, network hardware, operating
systems
delays from the network itself, routers

Network Latency

Network Bandwidth

The rate at which the network can deliver data to the
destination point (bits per second, bps)
Rate of transfer
Available bandwidth determined by wire and hardware

Network Reliability

Measure of how much data is lost by the network during
the journey from source to destination host
Two categories of data loss

Dropping – the data does not arrive (i.e., discarded by the
network)
Corruption - content of data packets has been changed

Reliability can vary widely
When reliability needed send acknowledgement

Network Protocol

Describes the set of rules that two applications use to
communicate with each other
Consists of three components:

Packet format – understanding what the other endpoint is
saying
Packet semantics – what the recipient can assume when it
receives a packet
Error behavior – what to do if (when) something goes wrong

Packet Format

Describes what each type of packet looks like
Tells the sender what to put in the packet
Tells recipient how to parse the inbound packet

Packet Semantics

Sender and recipient must agree on what the recipient
can assume if it receives a particular packet
What actions the recipient should take in response to the
packet

Error Behavior

Rules about how each endpoint should respond to
various error scenarios

Network Communication

Bandwidth

Latency

Reliability

Protocol

The BSD Sockets Architecture
When an application sends a packet, the host must make sure
that it gets sent to the right destination, and when a host
receives a packet, it must make sure that it is delivered to the
correct application. To achieve these two tasks, most hosts on
the Internet use the Berkeley Software Distribution (BSD)
Sockets network architecture to keep track of applications and
network connections.
This architecture first gained wide acceptance in the
Unix operating system, but today, it is implemented on
virtually all of the major commercial operating systems
on the market. The WinSock library used on Microsoft
Windows 3.1/95/NT platforms is a derivative of the
BSD interfaces.

Sockets & Ports

Socket
a software representation of the endpoint to a communication
channel
can represent many different types of channels (i.e.,
reliable/unreliable communication, single/multiple
destinations, etc)
IP address + UDP/TCP + port number
131.120.1.13, UDP, 51
131.120.1.13, TCP, 51

Port
A specific numerical identifier for an individual application

Sockets

A socket identifies several pieces of information about a
communication channel:

Protocol: How the operating systems exchange application data
Destination host: The destination host address(es) for packets
sent on this socket
Destination application ID or port: Identifies the appropriate
socket on the destination host
Source host: Identifies which host is sending the data
Local application ID/port: A 16 bit integer that identifies which
application is sending data along this socket

Port Numbers

Provide foundation of open networking
Like a set of post office box numbers for the protocol
Each application gets a port number
Port number + host address gives it a unique identifier
to send and receive
Over 65,000 valid port numbers

OS can support many applications at once

Port Numbers

Port numbers 1 - 1024 are reserved for “well-known”
applications/OS services
1025 - 10,000 are registered for certain “well-known”
protocols
Example:

port 80 is reserved for HTTP
port 25 is reserved for simple mail transfer protocol
port 1080 is used by SOCKS (network firewall security)

Internet Protocols for Networked VE

Common Internet Protocols
Internet Protocol
TCP
UDP

Broadcasting
Multicasting

Internet Protocols for Networked VE

Low-level protocol used by hosts and routers to ensure
the packets travel from the source to the destination
Includes facilities for splitting the packets into small
fragments

network links might not be able to support large packets
used to reconstruct packets at other end

Also includes time to live (TTL) field
how many network hops may transfer the packet

Internet Protocols for Networked VE

Transmission Control Protocol (TCP)
Most common protocol in use today
Layered on top of IP referred to as TCP/IP
Provides illusion of point to point connection to an application
running on another machine
Each endpoint can regard a TCP/IP connection as a bi-
directional stream of bytes between two endpoints
Application can detect when other end of connection has gone
away/disconnected

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is a lightweight
communication protocol
Differs from TCP in three respects:

connection-less transmission
best-efforts delivery
packet-based data semantics

Does not establish peer-to-peer connections

User Datagram Protocol (UDP)

Sender and recipient of do not keep any information
about the state of the communication session between
the two hosts
Simply provides best-efforts delivery, i.e. no guarantee
that data is delivered reliably or in order
Endpoints do not maintain state information about the
communication, UDP data is sent and received on a
packet-by-packet basis
Datagrams must not be too big, because if they must be
fragmented, some pieces might get lost in transit

User Datagram Protocol (UDP) Advantages

Simplicity
Does not include the overhead needed to detect
reliability and maintain connection-oriented semantics

UDP packets require considerably less processing at the
transmitting and receiving hosts

Does not maintain the illusion of a data stream
packets can be transmitted as soon as they are sent by the
application instead of waiting in line behind other data in the
stream; similarly, data can be delivered to the application as
soon as it arrives at the receiving host instead of waiting in line
behind missing data

User Datagram Protocol (UDP) Advantages

Many operating systems impose limits on how many
simultaneous TCP/IP connections they can support.
Operating system does not need to keep UDP connection
information for every peer host, UDP/IP is more
appropriate for large-scale distributed systems where
each host communicates with many destinations
simultaneously

UDP Disadvantage for Some NVEs

When a socket is receiving data on a UDP port, it will
receive packets sent to it by any host, whether it is
participating in the application or not
This possibility can represent a security problem for
some applications that do not robustly distinguish
between expected and unexpected packets
For this reason, many network firewall administrators
block UDP data from being sent to a protected host from
outside the security perimeter

UDP Broadcasting

With UDP/IP, an application can direct a packet to be
sent to one other application endpoint
Could send the same packet to multiple destinations by
repeatedly calling sendto() (in C) or
DatagramSocket.send() (in Java)
This approach has two disadvantages:

Excessive network bandwidth is required because the same
packet is sent over the network multiple times
Each host must maintain an up-to-date list of all other
application endpoints who are interested in its data

UDP Broadcasting

UDP broadcasting provides a partial solution to these
issues
Allows a single transmission to be delivered to all
applications on a network who are receiving on a
particular port
Useful for small net-VE’s
Expensive because every host on network must receive
and process every broadcast packet
Not used for large or internet based VE’s (use IP
Multicast)

IP Multicasting

UDP broadcasting can only be used in a LAN
environment
Even if no application on that host is actually interested
in receiving the packet each host on the LAN must:

receive packet
process the packet

Multicasting is the solution to both of these concerns
Appropriate for Internet use, as well as LAN use
Does not impose burdens on hosts that are not interested
in receiving the multicast data

IP Multicasting

IP addresses in the range 224.0.0.0 through
239.255.255.255 are designated as multicast addresses
The 224.*.*.* addresses are reserved for use by the
management protocols on a LAN, and packets sent to
the 239.*.*.* addresses are typically only sent to hosts
within a single organization
Internet-based net-VE application should therefore use
one or more random addresses in the 225.*.*.* to 238.*.*.*
range
The sender transmits data to a multicast IP address, and
a subscriber receives the packet if it has explicitly joined
that address

IP Multicasting

Rapidly emerging as the recommended way to build
large-scale net-VEs over the Internet
Provides:

desirable network efficiency
allows the net-VE to partition different types of data by using
multiple multicast addresses

Using a well-known multicast address, net-VE
participants can announce their presence and learn
about the presence of other participants

IP Multicasting

Also an appropriate technique for discovering the
availability of other NVE resources such as terrain
servers
These features make multicasting desirable even for
LAN-based NVEs.

IP Multicasting Limitations

Limitations generally related to its infancy
Although an increasing number of routers are multicast-
capable, many older routers are still not capable of
handling multicast subscriptions
In the meantime, multicast-aware routers communicate
directly with each other, “tunneling” data past the
routers that cannot handle multicast data

Selecting an NVE Protocol

Multiple protocols can be used in a single system
Not which protocol should I use in my NVE but which
protocol should I use to transmit this piece of
information?
Using TCP/IP

Reliable data transmission between two hosts
Packets are delivered in order, error handling
Relatively easy to use
Point-to-point limits its use in large-scale NVEs
Bandwidth overhead

Selecting an NVE Protocol

Using UDP/IP
Lightweight
Offers no reliability nor guarantees the order of packets
Packets can be sent to multiple hosts
Deliver time-sensitive information among a large number of
hosts
More complex services have to be implemented in the
application

Serial numbers, timestamps
Recovery of lost packets

Positive acknowledgement scheme
Negative acknowledgement scheme
More effective when the destination knows the sources and their
frequency

Transmit a quench packet if packets are received too often

Selecting an NVE Protocol

Using IP Broadcasting
Design considerations similar to UNICAST UDP/IP
Limited to LAN
Not for NVEs with a large number of participants
To distinguish different applications using the same port
number (or multicast address)

Avoid the problem entirely – assign the necessary number
Detect conflict and renegotate – notify the participants and direct
them to migrate a new port number
Use protocol and instance magic numbers – each packet includes a
magic number at a well-known position
Use encryption

Selecting an NVE Protocol

Using IP Multicasting
Provides a quite efficient way to transmit information among a
large number of hosts
Information delivery is restricted

Time-to-live
Group subscription

Preferred method for large-scale NVEs
How to separate the information flow among different multicast
groups

A single group/address for all information
Several multicast groups to segment the information

CODE

C/C++ for:
TCP/IP
UDP/IP
BROADCAST
MULTICAST

TCP/IP Client-Server Model
Network

CLIENT SERVER

Sends
Request

Receives
Request

CLIENT

Network

Receives
Reply

Sends
Reply

Direct Connection Established

Direct Connection Established
SERVER

CLIENT ACTIONS:

1. Obtain a socket
2. Connect to the server
3. Communicate with server

* Send data/requests
* Receive data/replys

4. Close the socket

SERVER ACTIONS:

1. Obtain a socket
2. Bind the socket to a

‘well known’ port
3. Receive connections

from clients
4. Communicate with clients

* Receive data/requests
* Send data/replys

5. Close the socket

C / C++ TCP/IP Socket Implementation

CLIENT ACTIONS:
1. Obtain a socket
2. Connect to the server
3. Communicate with server

* Send data/requests
* Receive data/replys

4. Close the socket

OBTAIN A SOCKET

* Use ‘socket(...)’ function
* ‘socket(...)’ interfaces with

the O/S to create a socket
* Arguments in call to socket()

determine the protocol and data
stream semantics

* ‘socket(...)’ returns an int
that the user can use to
reference the socket

C / C++ TCP/IP Socket Implementation

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int sock; // user reference to the socket

// Allocate a socket function call parameters
// PF_INET: Use the Internet family of Protocols
// SOCK_STREAM: Provide reliable byte-stream semantics
// 0: Use the default protocol (TCP) */
sock = socket(PF_INET, SOCK_STREAM, 0);

if (sock == -1) { // an error has occured
perror("socket");
return;

}

C / C++ TCP/IP Socket Implementation

C / C++ TCP/IP Socket Implementation

CLIENT ACTIONS:
1. Obtain a socket
2. Connect to the server
3. Communicate with server

* Send data/requests
* Receive data/replys

4. Close the socket

CONNECT TO THE SERVER

* Allocate an Internet Socket Address
- sockaddr_in
- contains server address and port

* Connect to the server
- bind a free local port to the client’s

socket
- attempt to connect to the server

specified in sockaddr_in
- if connection is successful, it is

initialized

struct sockaddr_in serverAddr; // The address and port of the server

bzero((char *)&serverAddr, sizeof(serverAddr)); // Zero out allocated memory
serverAddr.sin_family = PF_INET; // Use Internet addresses
serverAddr.sin_addr.s_addr = inet_addr("10.25.43.9");

// The inet_addr() function converts an IP address string into a four-byte
// integer with one byte for each of the address values
// htons() converts a 16-bit short integer into the network byte order so
// that other hosts can interpret the integer even if they internally store
// integers using a different byte order
serverAddr.sin_port = htons(13214);

// Connect to the remote host
if (connect(sock, (struct sockaddr *)&serverAddr, sizeof(serverAddr)) == -1) {

perror("connect");
return;

}

C / C++ TCP/IP Socket Implementation

1. Obtain a socket
2. Connect to the server
3. Communicate with server

* Send data/requests
* Receive data/replys

4. Close the socket

C / C++ TCP/IP Socket Implementation

CLIENT ACTIONS:
COMMUNICATE W/ SERVER

* Place data to send into a buffer
* Provide the buffer to the O/S

along with socket ID for
transmission

int BUFFERLEN = 255;
char buf[BUFFERLEN]; // Allocate a buffer

sprintf(buf, "%chello!", (char)strlen("hello!")); // Write data to buffer

if (write(sock, buf, 1+strlen(buf)) == -1) { // Write buffer to socket
perror("write"); // i.e. send the data
return;

}

C / C++ TCP/IP Socket Implementation

CLIENT ACTIONS:
1. Obtain a socket
2. Connect to the server
3. Communicate with server

* Send data/requests
* Receive data/replys

4. Close the socket

CLOSE THE SOCKET

* Invoke ‘close(...)’ on
the socket

* Both sides must close their
sockets to completely close
the connection

* code == > close(sock);

C / C++ TCP/IP Socket Implementation

1. Obtain a socket
2. Bind the socket to a

‘well known’ port
3. Receive connections

from clients
4. Communicate with clients

* Recieve data/requests
* Send data/replys

5. Close the socket

SERVER ACTIONS: BIND THE SOCKET TO A PORT

* Allocate an Internet Socket
Address structure
- sockaddr_in
- contains address and port of

the server
* Bind the server to the socket

C / C++ TCP/IP Socket Implementation

struct sockaddr_in serverAddr; // The address and port of the server

bzero((char *)&serverAddr, sizeof(serverAddr)); // Zero out allocated memory
serverAddr.sin_family = PF_INET; // Use Internet addresses

// INADDR_ANY says that the operating system may choose to which local IP address
// to attach the application. For most machines, which only have one address, this
// simply chooses that address. The htonl() function converts a four-byte integer long
// integer into the network byte order so that other hosts can interpret the integer
// even if they internally store integers using a different byte order
serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddr.sin_port = htons(13214);

// Bind the socket to the well-known port
if (bind(sock, (struct sockaddr *)&serverAddr, sizeof(serverAddr)) == -1) {

perror("bind");
return;

}

C / C++ TCP/IP Socket Implementation

1. Obtain a socket
2. Bind the socket to a

‘well known’ port
3. Receive connections

from clients
4. Communicate with clients

* Recieve data/requests
* Send data/replys

5. Close the socket

SERVER ACTIONS: RECEIVE CLIENT CONNECTIONS
* Listen for client connections

- use ‘listen(...)’
- Tell O/S how many client

connections can be queued
* Call ‘accept(...)’ to wait for

a client to connect

C / C++ TCP/IP Socket Implementation

int acceptSock = sock; // The original socket allocated by the server is used to
// listen for and accept client connections

struct sockaddr_in clientAddr; // allocate an address structure for the clients address

listen(acceptSock, 4); // listen for connections

while ((sock = accept(acceptSock, (struct sockaddr)&clientAddr, sizeof(clientAddr)))
!= -1) {
// sock represents a connection to a client, clientAddr is the client's host address
// and port
/* ... Process client connection ... */
}

// Only break out of loop if there is an error
perror("accept");

C / C++ TCP/IP Socket Implementation

1. Obtain a socket
2. Bind the socket to a

‘well known’ port
3. Receive connections

from clients
4. Communicate with clients

* Receive data/requests
* Send data/replys

5. Close the socket

SERVER ACTIONS: COMMUNICATE WITH CLIENTS

* Allocate a buffer to place the
data into

* Read the data from the socket
placing it into the buffer

C / C++ TCP/IP Socket Implementation

int BUFFERLEN = 255; // Allocate buffer to place received data in
char buf[BUFFERLEN];
int byteCount = 0; // Total number of bytes read
int n; // Number of bytes read this time

while (((n = read(sock, buf+byteCount, BUFFERLEN-byteCount)) > 0) {
byteCount += n;
if (byteCount > buf[0]) {

break;
}

}
if (n < 0) { // error

perror("read");
return;

}
if (n == 0) { // Connection was closed

/* ... */
}

C / C++ TCP/IP Socket Implementation

NOTES:
* The server has actually opened two sockets,

- One to receive connecting clients on
- One to actually communicate to a specific client on

* Provided code can only process one client at a time
- threads can be used to process multiple client connections

* read() and accept() calls block until data or a new client
connection have arrived
- This can be avoided using the select() function
- Code is provided in the book

C / C++ TCP/IP Socket Implementation

UDP/IP Communication Model
Network

HOST1 HOST2

Sends
Data

Receives
Data

HOST1

Network

Receives
Data

Sends
Data

No Connection Established

No Connection Established
HOST2

STEPS TO IMPLEMENT A UDP/IP SOCKET
1) Obtain a socket
2) Bind the socket to a ‘well known’ port
3) Transmit Data
4) Receive Data
5) Close the socket

* Above process is ‘a way’ not the only way

C / C++ UDP/IP Socket Implementation

STEP 1: OBTAIN A SOCKET
* Use the ‘socket(...)’ function, ‘socket(...)’ interfaces with

the O/S to create a socket
* Arguments in the call to ‘socket(...)’ determine the protocol

and data stream semantics
* Call to ‘socket(...)’ returns an int that user can use to

reference the socket
* No call to connect() is required as in TCP/IP because UDP/IP

is connectionless

C / C++ UDP/IP Socket Implementation

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int sock; // Declare an int to hold a reference to a socket

// arguments in call to socket are as follows...
// PF_INET: Use the Internet family of Protocols
// SOCK_DGRAM: Provide best-efforts packet semantics
// 0: Use the default protocol (UDP)

// create/open the socket
sock = socket(PF_INET, SOCK_DGRAM, 0);
if (sock == -1) {

perror("socket");
return;

}

C / C++ UDP/IP Socket Implementation

STEP 2: BIND SOCKET TO A ‘WELL KNOWN’ PORT

* When data is first transmitted through a socket the O/S
binds a randomly chosen port to the socket

* It is better to bind the socket to a ‘well known’ port so other
hosts know where to send data

* Allocate an internet address structure to hold the sender’s IP
address and port number (sockaddr_in)

* Bind the socket to the port contained in the internet address
structure

C / C++ UDP/IP Socket Implementation

struct sockaddr_in localAddr; // Allocate an internet address structure
// for the address/port of the local endpoint

bzero((char *)&localAddr, sizeof(localAddr)); // zero out allocated memory
localAddr.sin_family = PF_INET; // Use Internet addresses
localAddr.sin_addr.s_addr = htonl(INADDR_ANY); // Use any local IP address
localAddr.sin_port = htons(13214); // Port that others can send to

// Bind the socket to the well-known port
if (bind(sock, (struct sockaddr *)&localAddr, sizeof(localAddr)) == -1) {

perror("bind");
return;

}

C / C++ UDP/IP Socket Implementation

STEP 3: TRANSMIT DATA

* Write the data to be sent into a buffer
* Allocate an internet address structure to contain destination

IP address and port
* Transmit the data by calling sendto() function with data

buffer and internet address structure as arguments
* Note that unlike TCP/IP the size of the data need not be

transmitted, this is because datagram delivery semantics
ensure the entire buffer will be delivered as a unit

C / C++ UDP/IP Socket Implementation

int BUFFERLEN = 255;
char buf[BUFFERLEN]; // Allocate buffer for data
sprintf(buf, "hello!"); // Write data into the buffer

struct sockaddr_in destAddr; // The address/port of the remote endpoint
bzero((char *)&destAddr, sizeof(destAddr)); // zero out allocated memory
destAddr.sin_family = PF_INET; // Use Internet addresses
destAddr.sin_addr.s_addr = inet_addr("10.25.43.9");
destAddr.sin_port = htons(13214);

// Send data to the specified destination
if (sendto(sock, buf, strlen(buf) + 1, 0,
(struct sockaddr *)&destAddr, sizeof(destAddr)) != strlen(buf)) {

perror("sendto");
return;

}

C / C++ UDP/IP Socket Implementation

STEP 4: RECIEVE DATA

* Allocate a buffer to put received data in
* Allocate an internet address structure to hold the sender’s

IP address and port number
* call recvfrom() function with data buffer and internet address

structure as arguments

C / C++ UDP/IP Socket Implementation

int BUFFERLEN = 255;
char buf[BUFFERLEN]; // Buffer for incoming data

struct sockaddr_in srcAddr; // The address/port of sender
bzero((char *)&destAddr, sizeof(srcAddr)); // zero out allocated memory

// Receive data sent to the UDP port
if (recvfrom(sock, buf, sizeof(buf), 0,
(struct sockaddr *)&srcAddr, sizeof(srcAddr)) == -1) {

perror("recvfrom");
return;

}
// Sender's address stored in srcAddr structure

C / C++ UDP/IP Socket Implementation

STEP 5: CLOSE THE SOCKET

* Remember, there is no connection to close
* However, the socket should still be closed in order to free

resources that are no longer needed
* Other hosts have no way of knowing that the connection

has been closed
* code ==> close(sock);

C / C++ UDP/IP Socket Implementation

* UDP broadcasting is identical to UDP/IP unicast with two
exceptions
1) The destination address must be set to the broadcast pseudo

IP address
destAddr.sin_addr.s_addr = inet_addr(“255.255.255.255”)

2) Before data can be broadcast on a socket the application
must register its intent to do so

int one = 1;
setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &one, sizeof(one));

* SO_BROADCAST is a state variable, remains in force until
changed

* UDP sockets can receive both unicast and broadcast packets

C / C++ UDP Broadcasting
Socket Implementation

* TO TRANSMIT DATA:

- Multicast transmission is nearly identical to UDP/IP. Make
sure the packets are sent to a multicast address

- The SO_BROADCAST option need not be set
- Can set the Time To Live field as shown below

unsigned char ttl = 31;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));

C / C++ Multicasting
Socket Implementation

* TO RECEIVE DATA:

- The application must subscribe the socket to a multicast address
- Subscribing to a multicast address is accomplished by calling

setsockopt() with the IP_ADD_MEMBERSHIP option

struct ip_mreq joinAddr;

// Specify the multicast address to join
joinAddr.imr_multiaddr = inet_addr(“245.8.2.58”);

// Specify which local IP address will do the multicast join
joinAddr.imr_interface = INADDR_ANY;

setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &joinAddr, sizeof(joinAddr))

C / C++ Multicasting
Socket Implementation

* TO RECEIVE DATA cont:

- To cancel a multicast subscription call setsockopt() with the
IP_DROP_MEMBERSHIP option

struct ip_mreq joinAddr;

// Specify the multicast address to drop
joinAddr.imr_multiaddr = inet_addr(“245.8.2.58”);

// Specify which local IP address will do the multicast drop
joinAddr.imr_interface = INADDR_ANY;

setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &joinAddr, sizeof(joinAddr))

C / C++ Multicasting
Socket Implementation

