
Designing iPhone ApplicationsDesigning iPhone Applications

448460-1
F ll 2011Fall 2011

10/20/2011
Kyoung Shin ParkKyoung Shin Park

Multimedia Engineering
Dankook Universityy

Overview

 Designing iPhone Applications
 Model-View-Controller (Why and How?)
 View Controllers
 Navigation Controllers
 Tab Bar Controllers
 Combining Approaches

2

Designing iPhone ApplicationsDesigning iPhone Applications

3

Organizing Content

 Focus on your user’s data

g g

 One thing at a time
 Screenfuls of content

Patterns for Organizing Contentg g

 Navigation Bar Tab Bar
 Hierarchy of content
 Drill down into greater

detail

 Self-contained modes

detail

Model-View-Controller
(Wh d H ?)(Why and How?)

6

Why Model-View-Controller?y

 Clear responsibilities make things easier to maintain
 Avoid having one monster class that does everything
 Separating responsibilities also leads to reusability
 By minimizing dependencies, you can take a model or

view class you’ve already written and use it elsewhere
 Think of ways to write less code

Model

 Not aware of views or controllers
 Typically the most reusable
 Communicate generically using

 Key-value observing
 Notifications

View

 Not aware of controllers, may be aware of relevant
model objects

 Also tends to be reusable
 Communicate with controller using

 Target-action
D l i Delegation

Controller

 Knows about model and view objects
 The brains of the operation
 Manages relationships and data flow
 Typically application-specific, so rarely resuable

View ControllersView Controllers

11

Problem: Managing a Screenful

 Controller manages views, data and application logic

g g

 Applications are made of many of these controllers
 Would be nice to have a well-define starting point

 UIView for views
 Common language for talking about controllers

Problem: Building Typical Applications

 Some application flows are very common

g yp pp

 Navigation-based
 Tab bar-based

C bi th t Combine the two

 Don’t reinvent the wheel
 Pl i di id l t th t b ild li ti Plug individual screens together to build an application

UIViewController

 Basic building block
 Manages a screenful of content
 Subclass to add your application logic

 Create “your” own UIViewController subclass for each
screenful

 Plug them together using existing composite view controllers Plug them together using existing composite view controllers

Views Data LogicViewController

Your View Controller Subclass

#import <UIKit/UIKit.h>
@interface MyViewController: UIViewController {

// a view controller will usually manage views and data
NSMutableArray *myData;NSMutableArray *myData;
UILabel *myLabel;

}}

// expose some of its contents to clients
@property (readonly) NSArray *myData;

// respond to actions// respond to actions
-(void)doSomeAction: (id)sender;

The “View” in “View Controller”

 UIViewController superclass has a view property
 @property (retain) UIView *view;

 Loads lazily
 On demand when requested
 Can be purged on demand as well (low memory)

 Si i d iti i th i ? Sizing and positioning the view?
 Depends on where it’s being used
 Don’t make assumptions be flexible Don t make assumptions, be flexible

When to call –loadView?

 Don’t do it!
 Cocoa tends to embrace a lazy philosophy

 Call –release instead of -dealloc
 Can –setNeedsDisplay instead of –drawRect

 Allows work to be deferred or coalesced
P f ! Performance!

Creating Your View in Code

 Override –loadView

g

 Never call this directly

 Create your views
 Set the view property
 Create view controller with –init

// subclass of UIViewController
(void)loadView-(void)loadView

{
MyView *myView = [MyView alloc] initWithFrame:frame];y y [y]];
self.view = myView; // view controller owns the view
[myView release];

}

Creating Your View with Interface Builder

 Layout a view in Interface Builder

g

 File’s owner is view controller class
 Hook up view outlet
 Create view controller with –initWithNibName:bundle:

View Controller LifecycleView Controller Lifecycle

20

-initWithNibName:bundle: & -viewDidLoad

// UIViewController’s designated initializer
-(id)initWithNibName: (NSString *)nibName

bundle: (NSBundle *)bundle {
self = [super init];self = [super init …];
if (self) {

myData = [[NSMutableArray alloc] init];y [[y]]
self.title = @”Foo”;

}
return self;

}
-(void) viewDidLoad {-(void) viewDidLoad {

// your view has been loaded, customize it here if needed
myLabel.titleLabel.text = @”Test”;y

}

-viewWillAppear: & -viewWillDisappear:pp pp

// this method gets called every time the view appears on screen
-(void) viewWillAppear: (BOOL)animated {

[super viewWillAppear: animated];
// your view is about to show on the screen// your view is about to show on the screen
[self beginLoadingDataFromTheWeb];
[self startShowingLoadingProgress];[g g g]

}
// this method gets called every time the view disappears on screen
-(void) viewWillDisappear: (BOOL)animated {

[super viewWillDisappear: animated];
// your view is about to leave the screen// your view is about to leave the screen
[self rememberScrollPosition];
[self saveDataToDisk];

}

-shouldAutorotateToInterfaceOrientation:

// reacting to device rotation
// UIViewController’s view is allowed to flip around if the device is
turned upside down
// There is also UIInterfaceOrientationLandscapeLeft and Right// There is also UIInterfaceOrientationLandscapeLeft and Right
// This view controller only supports portrait
-(BOOL) shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation {
return (anOrientation == UIInterfaceOrientationPortrait);

}}
// This view controller supports all orientations except for upside-dow
-(BOOL) shouldAutorotateToInterfaceOrientation:(BOOL) shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation {
return (anOrientation != UIInterfaceOrientationPortraitUpsideDown);

}

Autoresizing Your Viewsg

view.autoresizingMask = UIViewAutoresizingFlexibleWidth |
UIViewAutoresizingFlexibleHeight;

view autoresizingMask = UIViewAutoresizingFlexibleWidth |view.autoresizingMask = UIViewAutoresizingFlexibleWidth |
UIViewAutoresizingFlexibleTopMargin;

View Controller Initialization Recap

 4 places to initialize things in View Controller subclasses

p

-(id) initWithNibName: (NSString *)nib bundle: (NSBundle *)bundle
-(void)awakeFromNib;
(id) i DidL d-(void)viewDidLoad;

-(void)viewWillAppear: (BOOL) animated;

View Controller Initialization Recap

 Designated Initializer

p

 Usually only for things that have to be initialized for your view
controller to even “make sense”

 Often thought of as the place to initialize things having to do Often thought of as the place to initialize things having to do
with your model

 Definitely not for initializing things in your View (some UI-
related things ok like self.title)

 -awakeFromNib
S (ll) d i t d i iti li Same purpose (generally) as your designated initializer

 This is called on every object that comes out of a .xib file
 Usually you want your VC to work when it is alloc/inited or if it Usually you want your VC to work when it is alloc/inited or if it

comes from a .xib
 So create a method (e.g. setup) and call it from

i itWithNibN b dl d k F NibinitWithNibName:bundle: and awakeFromNib

View Controller Initialization Recap

 -viewDidLoad

p

 This is the best place to put non-geometry-related
initialization code which pertains to your View

 You might even add some views to your hierarchy in this method You might even add some views to your hierarchy in this method
(stuff you couldn’t do in IB)

 Wouldn’t be out of the question to put some Model initialization
code here, but theoretically this method could be called multiple
times, so don’t re-initialize something already initialized

 It’s not totally unheard of to have Views which are loaded, but It s not totally unheard of to have Views which are loaded, but
then never appear on screen

 So consider viewWillAppear: for some things, but maybe check to
id lti l i iti li tiavoid multiple initialization

 -viewWillAppear
 If you have initialization that depends on your View’s bounds If you have initialization that depends on your View s bounds

being set, you must do it here (and not in viewDidLoad)

Controller of ControllersController of Controllers

28

Controller of Controllers

 Special View Controllers that manage a collection of
other MVCs

 UINavigationController
 Manages a hierarchical flow of MVCs and presents them like a

“stack of cards”
 Commonly used on the iPhone Commonly used on the iPhone

 UITabBarController
 Manages a group of independent MVCs selected using tabs on g g p p g

the bottom of the screen

 UISplitViewControllers
 Side-by-side, master-detail arrangement of two MVCs
 iPad only

Navigation ControllerNavigation Controller

30

UINavigationControllerg

 Stack of view controllers
 Navigation bar

View Controller
Navigation
Controller

View Controller

View Controller
Controller

View Controller

How It Fits Togetherg

 Top view controller’s title
 NSString

 Previous view controller’s title
 NSString

 Top view controller’s view
i UIView

 Top view controller’s toolbar
items (iPhone OS 3 0)items (iPhone OS 3.0)
 NSArray of UIBarButtonItems

Modifying the Navigation Stack

 Push to add a view controller

y g g

-(void) pushViewController: (UIViewController *)viewController
animated: (BOOL) animated;

P i ll Pop to remove a view controller
-(UIViewController *)popViewControllerAnimated: (BOOL)animated;

 Set t h th ti t k f i t ll Set to change the entire stack of view controller
-(void)setViewControllers: (NSArray *)viewControllers

animated: (BOOL)animated;animated: (BOOL)animated;

Pushing Your First View Controllerg

-(BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

{
// create a navigation controller// create a navigation controller
navController = [[UINavigationController alloc] init];
// push the first view controller on the stackp
[navController pushViewController:firstViewController

animated:NO];
// add the navigation controller’s view to the window
[window addSubview:navController.view];
[window makeKeyAndVisible];[window makeKeyAndVisible];
return YES;

}

In Response to User Actions

 Push from within a view controller on the stack

p

-(void) someAction: (id)sender
{

// t ti ll t th i t ll// potentially create another view controller
UIViewController *viewController = …;
[self.navController pushViewController:viewController[self.navController pushViewController:viewController

animated:YES];
}

 Almost never call pop directly!
 It automatically invoked by the back button.
 But it can happen programmatically as well using
-popViewControllerAnimated: (BOOL)animated;

Application Data FlowApplication Data Flow

36

A Controller for Each Screen

List
Controller

List
Controller

Detail
Controller

37

Controller Controller Controller

Connecting View Controllersg

 Multiple view controllers may need to share data
 One may need to know about what another is doing

 Watch for added, removed or edited data
 Other interesting events

How Not To Share Data

 Global variables or singletons
 This includes your application delegate!

 Direct dependencies make your code less reusable
 And more difficult to debug & test

List
Controller

Detail
Controller

Application
Don’t Do This!

Application
Delegate

Best Practices for Data Flow

 Figure our exactly what needs to be communicated
 Define input parameters for your view controller
 For communicating back up the hierarchy, use loose

coupling
 Define a generic interface for observers (like delegation)

List Detail

Data

Controller Controller

Customizing NavigationCustomizing Navigation

41

Customizing Navigationg g

 Buttons or custom controls
 Interact with the entire screen

UINavigationItemg

 Describes appearance of the navigation bar
 Title string or custom title view
 Left & right bar buttons

M ti d fi d i UIN i ti B h More properties defined in UINavigationBar.h

 Every view controller has a navigation item for
customizingcustomizing
 Displayed when view controller is on top of the stack

Navigation Item Ownershipg p

View Controller

View Controller View ControllerNavigation ItemView Controller View Controller

Vi C t ll

Navigation Item

View Controller

Displaying a Titlep y g

 UIViewController already has a title property
 @property(nonatomic, copy) NSString * title

 Navigation item inherits automatically
 Previous view controller’s title is displayed in back button

viewController.title = @”Detail”;;

Left & Right Buttonsg

 UIBarButtonItem
 Special object, defines appearance & behavior for items in

navigation bars and toolbars

 Display a string image or predefined system item Display a string, image or predefined system item
 Target + action (like a regular button)

Text/System Bar Button Item/ y

-(void) viewDidLoad {
UIBarButtonItem *fooBtn = [[UIBarButtonItem alloc]

initWithTitle: @”Foo”
style:UIBarButtonItemStyleBorderedstyle:UIBarButtonItemStyleBordered
target:self
action:@selector(foo:)];()]

self.navigationItem.leftBarButtonItem = fooBtn;
UIBarButtonItem *addBtn = [[UIBarButtonItem alloc]

initWithBarButtonSystemItem: UIBarButtonSystemItemAdd
style:UIBarButtonItemStyleBordered
target:selftarget:self
action:@selector(add:)];

self.navigationItem.rightBarButtonItem = addBtn;g g
[fooBtn release]; [addBtn release];

}

Edit/Done Button/

 Very common pattern
 Every view controller has one available

 Target/action already set up

self.navigationItem.leftBarButtonItem = self.editButtonItem;

//called when the user toggles the edit/done button
-(void) setEditing: (BOOL)editing animated: (BOOL)animated() g () g ()
{

// update appearance of views
}

Custom Title View

 Arbitrary view in place of the title

UISegmentedControl *segmentedControl = ……
lf i ti It titl Vi t dC t lself.navigationItem.titleView = segmentedControl;

[segmentedControl release];

Back Button

self.title = @”Hello there”;
UIBarButtonItem *heyBtn = [[UIBarButtonItem alloc]

initWithTitle:@”Hey!”
];…];

self.navigationItem.backButtonItem = heyBtn;
[heyBtn release];[y]

Tab Bar ControllersTab Bar Controllers

51

UITabBarController

 Array of view controllers
 Tab bar

View Controller
Tab Bar

Controller

View Controller

View Controller

Vi C t llView Controller

How It Fits Togetherg

 Selected view controller’s view
 All view controller’s titles

Setting Up a Tab Bar Controllerg p

-(BOOL) application: (UIApplication *)
didFinishLaunchingWithOptions: (NSDictionary *) options {

UIViewController *vc1 = ….;
UIViewController *vc2 = ;UIViewController *vc2 = ….;
// create a tab bar controller
UITabBarController tabController = [[UITabBarController alloc] init];[[]]
// set the array of view controllers
tabController.viewController = [NSArray arrayWithObjects:

vc1, vc2, …., nil];
[vc1 release]; [vc2 release];
// add the tab bar controller’s view to the window// add the tab bar controller s view to the window
[window addSubview:tabController.view];
[window makeKeyAndVisible];y
return YES;

}

Tab Bar Appearancepp

 View controllers can define their appearance in the tab
bar

 Each view controller comes with a tab bar item for
i icustomizing

 UITabBarItem
Ti l i i Title + image or system item

Tab Bar Item

-(void) setup // call from initiWithNibName:bundle: and awakeFromNib
{

UITabBarItem *titleAndImageItem = [[UITabBarItem alloc]
initWithTitle:@”Playlists”initWithTitle:@ Playlists
image:[UIImage imagedNamed:@”music.png]
tag:0];g]

self.tabBarItem = titleAndImageItem;
UITabBarItem *systemItem = [[UITabBarItem alloc]

initWithTabBarSystemItem: UITabBarSystemItemBookmarks
tag:0];

self tabBarItem = systemItem;self.tabBarItem = systemItem;
[titleAndImageItem release]; [systemItem release];

}

More View Controllers

 What happens when a tab bar controller has too many
view controllers to display at once?
 More tab bar item displayed automatically

U i t t i i i t ll

More button brings
up a UI to let the user
di hi h b Use can navigate to remaining view controllers

 Customize order
edit which buttons
appear on bottom row

More button appears

Combining ApproachesCombining Approaches

58

Tab Bar + Navigation Controllersg

 Combine UINavigationController & UITabBarController?
 Quite common
 Multiple parallel hierarchies

Tab Bar + Navigation Controllersg

 UINavigationController goes “inside” the UITabBarController

Navigation View Controller

 Never the other way around

Navigation
Controller

View ControllerView ControllerView Controller

Tab Bar
Controller

Navigation
Controller

View ControllerView ControllerView Controller

View Controller

Nesting Navigation Controllers

 Create a tab bar controller

g g

tabBarController = [[UITabBarController alloc] init];

 Create each navigation controller
navController = [[UINavigationController alloc] init];
[navController pushViewController:firstViewController

animated:NO];animated:NO];

 Add them to the tab bar controller
tabBarController viewControllers = [NSArray arrayWithObject:tabBarController.viewControllers = [NSArray arrayWithObject:

navController,
anotherNavController,
someViewController,
nil];

Setting Up TabBar+Navigation Controllerg p g

-(BOOL) application: (UIApplication *)
didFinishLaunchingWithOptions: (NSDictionary *) options {

UINavigationController *nav1 = [[UINavigationController alloc] init];
UINavigationController *nav2 = [[UINavigationController alloc] init];UINavigationController *nav2 = [[UINavigationController alloc] init];
[nav1 pushViewController: …]; [nav2 pushViewController: …];
// here, release the view controllers pushed onto the nav1 & nav2p
// create a tab bar controller
UITabBarController tabController = [[UITabBarController alloc] init];
// set the array of view controllers
tabController.viewController = [NSArray arrayWithObjects:

nav1 nav2 nil];nav1, nav2, nil];
// add the tab bar controller’s view to the window
[window addSubview:tabController.view];
[window makeKeyAndVisible];
return YES; }

Modal View Controllers

 Making a view controller’s view appear temporarily
 An blocking all other “navigation” in application until the user has

dealt with this view

 One view controller presents another view controller One view controller presents another view controller
modally
 Putting up a modal view that asks the user to find an address Putting up a modal view that asks the user to find an address
-(void) lookupAddress { // this might be a target/action method

AddressLookupViewController *vc =
[[AddressLookupViewController alloc] init];

[self.presentModalViewController:vc animated:YES];
[l][vc release];

}
 This method will fill the entire screen with vc’s view and This method will fill the entire screen with vc s view and

immediately return. The user will then not be able to do
anything except interact with vc’s view.

Modal View Controllers

 So when does it all end?
 It stays this way until someone sends this message to the view

controller which put vc up
(void) dismissModalViewControllerAnimated: (BOOL)animated;-(void) dismissModalViewControllerAnimated: (BOOL)animated;
 You do NOT send this to vc! You send it to the view controller

that presented vc (i.e., the one that implements the method
lookupAddress above).

 Not only that, but vc should NOT send it (since it should not
have a “back” pointer to that VC).have a back pointer to that VC).

Modal View Controllers

 So how is this conundrum resolved? Delegation
-(void) lookupAddress {

AddressLookupViewController *vc =
[[Add L k Vi C t ll ll] i it][[AddressLookupViewController alloc] init];

vc.delegate = self;
[self.presentModalViewController:vc animated:YES];[self.presentModalViewController:vc animated:YES];
[vc release];

}
// (one of) AddressLoopupViewController’s delegate method(s)
-(void) addressLookupViewController:

(Add L k Vi C t ll *) d(AddressLookupViewController *) sender
didSelectAddress: (Address *)anAddress {

// do something with the address the user selected & dismiss// do something with the address the user selected & dismiss
[self.dismissModalViewControllerAnimated:YES];

}

Modal View Controllers

 How is the modal view controller animated onto the
screen?
 Depends on this property in the view controller that is being put

up modallyup modally

@property UIModalTransitionStyle modalTransitionStyle;p p y y y
UIModalTransitionStyleConverVertical // slides up and down
UIModalTransitionStyleFlipHorizontal // flips the current vc view
UIModalTransitionStyleCrossDissolve // old fades out
UIModalTransitionStylePartialCurl

Modal View Controllers

 What about iPad?
 Sometimes it might not look good for a presented view to take

up the entire screen

@property UIModalPresentationStyle modalPresentationStyle;
UIModalPresentationFullScreen
UIModalPresentaitonPageSheet
UIModalPresentationFormSheet
UIModalPresentationCurrentContext

References

 Lecture 6 & 7 Slide from iPhone Application
Development (Winter 2010) @Stanford University

