
Building an iPhone ApplicationBuilding an iPhone Application

448460-1
F ll 2011Fall 2011

10/06/2011
Kyoung Shin ParkKyoung Shin Park

Multimedia Engineering
Dankook Universityy

Overview

 Building an Application
 Model-View-Controller Design
 Interface Builder and Nib Files
 Controls and Target-Action
 Views & Custom Views
 Drawing with core Graphics
 Text & Imagesg

2

Building an ApplicationBuilding an Application

3

Anatomy of an Application

 Compiled code

y pp

 Your code
 Framework

Nib fil Nib files
 UI elements and other objects
 Details about object relationships Details about object relationships

 Resources (images, sounds, strings, etc)
 Info plist file (application configuration) Info.plist file (application configuration)

Application Lifecyclepp y Event-Handling Cycleg y

UIKit Framework

 UIKit provides standard interface elements
 button, label, slider, tableview, etc

 Every application has a single instance of UIApplication
 Singleton design pattern
@interface UIApplication
+(UIApplication *) sharedApplication+(UIApplication *) sharedApplication
@end
 Orchestrates the lifecycle of an applicationy pp
 Dispatches events
 Manages status bar, application icon badge
 Rarely subclassed; Uses delegation instead

Main.m

#import <UIKit/UIKit.h>
int main(int argc, char *argv[])
{

// create an autorelease pool// create an autorelease pool
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// call UIApplicationMain
int retVal = UIApplicationMain(argc, argv, nil, nil);

// release autorelease pool
[pool release];

UIKit uses a default UIApplication class.
UIKit loads a main Nib file which will load
UIApplicationDelegate.

return retVal;
}}

Delegation

 Delegate allows one object to act on behalf of another

g

object
 Control passed to delegate objects to perform application

ifi b h ispecific behavior
 Avoids need to subclass complex objects
 Many UIKit classes use delegates

 UIApplication
 UITableView UITableView
 UITextField

The delegate is automatically registered as an observer of notifications posted by
the delegating object. The delegate need only implement a notification method
d l d b h f k l i i l ifi ideclared by the framework class to receive a particular notification message.
This window object posts an NSWindowWillCloseNotification to observers, but
sends a windowShouldClose: message to its delegate.

ApplicationDelegate

 Xcode project templates have one set up by default

pp g

 Object you provide that participates in application
lifecycle

 Many methods in the UIApplication object’s delegate
protocol

(id) li i DidFi i hL hi (UIA li i *) li i-(void) applicationDidFinishLaunching: (UIApplication *) application;
-(void) applicationWillTerminate: (UIApplication *) application;
-(void) applicationWillResignActive: (UIApplication *) application;(void) applicationWillResignActive: (UIApplication) application;
-(BOOL) application: (UIApplication *) application handleOpenURL:
(NSURL *) url;
-(void) applicationDidReceiveMemoryWarning: (UIApplication *)
application;

Application Delegate

@interface YourAppDelegate : NSObject<UIApplicationDelegate>{

pp g

UIWindow *window;
YourAppViewController * viewController;

}}
@property (nonatomic, retain) IBOutlet UIWindow * window;
@property (nonatomic, retain) IBOutlet YourAppViewController *

viewController;viewController;
@end
-(BOOL)application: (UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{ // override point for customization after application launch

// add the view controller’s view to the window and display// add the view controller s view to the window and display
[window addSubview:viewController.view];
[window makeKeyAndVisible];y
return YES;

}

Info.plist file

 Property List (often XML), describing your application

p

 Icon appearance
 Status bar style (default, black, hidden)

O i t ti Orientation
 Uses Wifi networking
 System Requirements System Requirements

 Can edit most properties in Xcode

Model View ControllerModel View Controller

13

Model View Controller

 The Model-View-Controller (MVC) design pattern assigns
objects in an application one of three roles: model, view,
or controller.

Model = What you application is (but not how it is displayed)
Controller = How your Model is presented to the user (UI logic)
View = Your Controller’s minionsView = Your Controller s minions

Model

 Manages the application data and state
 Not concerned with UI or presentation
 Often persists somewhere
 Same model should be reusable, unchanged in

different interfaces

View

 Present the Model to the user in an appropriate
interface

 Allows user to manipulate data
 Does not store any data (except to cache state)
 Easily reusable & configurable to display different data

Controller

 Intermediary between Model & View
 Updates the view when the model changes
 Updates the model when the user manipulates the view
 Typically where the application logic lives

Model View Controller

Controller

tl t

actions

outlets

actions
target

will did
shouldnotify

data
at count

Model

View

Interface Builder and NibInterface Builder and Nib

19

Nib Files

 Helps you design the View in MVC
 Layout user interface elements
 Add controller objects

C t th t ll d UI Connect the controller and UI

http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual
/iPhone101/Articles/04_InspectingNib.html#//apple_ref/doc/uid/TP40007514-CH6-SW1

Nib Loading

 At runtime, objects are unarchived

g

 Values/settings in Interface Builder are restored
 Ensures all outlets and actions are connected

O d f hi i i t d fi d Order of unarchiving is not defined

 If loading the nib automatically creates objects and
order is undefined how do I customize?order is undefined, how do I customize?
 -awakeFromNib

-awakeFromNib

 Control point to implement any additional logic after nib
loading

 Default empty implementation on NSObject
 You often implement it in your controller class

 E.g. to restore previously saved application state

f Guaranteed everything has been unarchived from nib,
and all connections are made before –awakeFromNib is
calledcalled
- (void) awakeFromNib {

// do customization here//
}

Controls and Target/ActionControls and Target/Action

23

Controls – Events

 View objects that allows users to initiate some type of
action

 Respond to variety of events
 Touch events

 touchDown
 touchDragged (entered exited drag inside drag outside) touchDragged (entered, exited, drag inside, drag outside)
 touchUp

 Value changed
 Editing events

 editing began
 editing changed editing changed
 editing ended

Controls – Target/Action

 When event occurs, actions is invoked on target object

g /

target: myObject
i @ l (d)action: @selector(decrease)

event: UIControlEventTouchUpInsideUIControlEventTouchUpInside

Controller

-(void)decrease

Action Methods

 3 different flavors of action method selector types
 -(void) actionMethod;
 -(void) actionMethod: (id) sender;

(id) ti M th d (id) d ithE t (UIE t *) t -(void) actionMethod: (id) sender withEvent: (UIEvent *) event;

 UIEvent contains details about the event that took UIEvent contains details about the event that took
place

Action Methods

 Simple no-argument selector
-(void) increase {

// bump the number of sides of the polygon up
l b OfSid 1polygon.numberOfSides += 1;

}

 Single argument selector –control is ‘sender’ Single argument selector –control is sender
-(void) adjustNumberOfSides:(id) sender { // if control is a slider

polygon.numberOfSides = [sender value];p yg [];
}

 Two arguments in selector (sender & event)
-(void) adjustNumberOfSides:(id) sender withEvent:(UIEvent *) event {

// could inspect event object if you needed to
}}

Multiple Target-Actions

 Contols can trigger multiple actions on different targets

p g

in response to the same event
 Different than Cocoa on the desktop where only one

i i dtarget actions is supported
 Different events can be setup in Interface Builder

Manual Target-Action

 Same information Interface Builder would use

g

 API and UIControlEvents found in UIControl.h
 UIControlEvents is a bitmask

@interface UIControl
(id) ddT (id) i (SEL) i-(void) addTarget: (id)target action: (SEL) action

forControlEvents: (UIControlEvents) controlEvents;

-(void) removeTarget: (id)target action: (SEL) action
forControlEvents: (UIControlEvents) controlEvents;

@end

DemoDemo

30

HelloPolygonyg

Controller

UIKi l P l ShUIKit controls
PolygonView

PolygonShape

Model View Controller

Controller

numberOfSidesLabelnumberOfSidesLabel
increaseButton
decreaseButton
polygonShape

increase
decrease

polygonShape

decrease

PolygonShape

PolygonView

ViewsViews

33

View Fundamentals

 A view (i.e., UIView subclass) represents a rectangular
area on screen

 Draws content and handles events in that rectangle
 Subclass of UIResponder (event handling class)
 Views arranged hierarchically

 Every view has one superview – (UIView *)superview
 Every view has zero or more subviews – (NSArray *)subviews
 Subview order (in that array) matters: those later in the array Subview order (in that array) matters: those later in the array

are on top of those earlier

View Hierarchy - UIWindow

 Views live inside of a window

y

 UIWindow is actually just a view
 Adds some additional functionality specific to top level view

 One UIWindow for an iPhone application
 Contains the entire view hierarchy

S b d f l i X d l j Set up by default in Xcode template project

View Hierarchy - Manipulation

 Add/remove views in Interface Builder or using UIView

y p

methods
-(void) addSubview: (UIView *)view;
(id) F S i-(void) removeFromSuperview;

 Manipulate the view hierarchy manually
(void) insertSubview: (UIView *)view atIndex: (int)index;-(void) insertSubview: (UIView *)view atIndex: (int)index;

-(void) insertSubview: (UIView *)view belowSubview: (UIView
*)view;
-(void) insertSubview: (UIView *)view aboveSubview: (UIView
*)view;
(void) exchangeSubviewAtIndex: (int)index-(void) exchangeSubviewAtIndex: (int)index

withSubviewAtIndex: (int)otherIndex;

View Hierarchy - Ownership

 A superview retains its subviews

y p

 Once you put a view into the view hierarchy, you can release
your ownership if you want

 Be careful when you remove a view from the hierarchy Be careful when you remove a view from the hierarchy
 If you want to keep using a view, retain ownership before you

send removeFromSuperviewp
 Removing a view from the hierarchy immerdiately causes a

release on it (not autorelease)
If th th it ill b i di t l If there are no other owners, it will be immediately
deallocated (and its subviews released)

 So, retain subview before removing if you want to reuse it, g y

View Transparency

 What happens when views overlap?

p y

 Subviews list order determines who’s in front
 Lower ones can “show through” transparent views sitting on top

of them thoughof them though

 When you are drawing, you can draw with transparency
 By default drawing is full opaque! By default, drawing is full opaque!

 Also, you can hide a view completely by setting hidden
propertyp p y
@property BOOL hidden;
myView.hidden = YES; // view will not be on screen and

// will not handle events

View-related Structures

 CGPoint
 {x, y}

 CGSize
 {width, height}

 CGRect
i i i {origin, size}

View-related Structures

Function Example

CGPointMake(x, y) CGPoint point = CGPointMake(10.0, 20.0);
i t 30 0point.x = 30.0;

point.y += 30.0;

CGSizeMake(width, height) CGSize size = CGSizeMake(40.0, 30.0);
size.width = 300.0;
size.height += 20.0;g ;

CGRectMake(x, y, width, height) CGRect rect = CGRectMake(100.0, 200.0,
40 0 30 0);40.0, 30.0);

rect.origin.x = 0.0;
rect.size.width = 50.0;

UIView Coordinate Systemy

+x
(0, 0) 550 View A Frame:

O i i (0 0)+x Origin: (0, 0)
Size: 550 x 400

View A Bounds:
Origin: (0, 0)
Size: 550 x 400

View B Frame:Center (300 225)
400

View B Frame:
Origin: (200, 100)
Size: 200 x 250

View B Bounds:

Center (300,225)

+y

View B Bounds:
Origin: (0, 0)
Size: 200 x 250

+y
 View’s location and size expressed in two ways:

 Frame is in superview’s coordinate systemy
 Bounds is in local coordinate system
 Center is the center of your view in your superview’s coordinates

Transform

 45o Rotation

Frame

 The smallest rectangle in the superview’s coordinate
system that fully encompasses the view itself

View B Center:View B Center:
Origin: (300, 225)

View B Frame:
Origin: (145 65)Origin: (145, 65)
Size: 320 x 320

View B Bounds:
Origin: (0 0)Origin: (0, 0)
Size: 200 x 250

Frame and Bounds

 If you are using a view, typically you use frame
 If you are implementing a view, typically you use bounds
 Matter of perspective

 From outside it’s usually the frame
 From inside it’s usually the bounds

 Examples
 Creating a view, positioning a view in superview – use frame
 Handling events drawing a view use bounds Handling events, drawing a view – use bounds

Creating ViewsCreating Views

45

Where do views come from?

 Commonly Interface Builder
 Drag out any of the existing view objects (buttons,

labels, etc)
 Drag generic UIView and set custom class

Manual Creation

 Views are initialized using –initWithFrame
 CGRect frame = CGRectMake(0, 0, 200, 150);
 UIView *myView = [[UIView alloc] initWithFrame: frame];

E l Example
 CGRect frame = CGRectMake(20, 45, 140, 50);
 UILabel *label = [[UILabel alloc] initWithFrame: frame]; UILabel *label = [[UILabel alloc] initWithFrame: frame];
 [window addSubview: label];
 [label setText:@”Number of sides:”];[];
 [label release]; // label now retained by window

Defining Custom Views

 When to create my own UIVIew subclass?

g

 For custom drawing, you override
 (void)drawRect: (CGRect) rect;

 For event handling, you override
 (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)

event;event;
 (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)

event;
 (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)

event;
 (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *) (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)

event;

Drawing ViewsDrawing Views

49

-(void)drawRect: (CGRect)rect

 [UIView drawRect:] does nothing by default

() ()

 If not overridden, then backgroundColor is used to fill

 Override –drawRect: to draw a custom view
 rect argument is area to draw

 drawRect is invoked automatically
D ’ ll i di l ! Don’t call it directly!

 When a view needs to be redrawn, use:
 (void)setNeedsDisplay; (void)setNeedsDisplay;

 For example (PolygonView.m)
-(void)setNumberOfSides: (int)sides {-(void)setNumberOfSides: (int)sides {

numberOfSides = sides;
[self setNeedsDisplay];y

}

CoreGraphics and Quartz 2D

 UIKit offers very basic drawing functionality

p Q

 UIRectFill(CGRect rect);
 UIRectFrame(CGRect rect);

C G hi (CG) D i API CoreGraphics (CG): Drawing APIs
 CG is a C-based API, not Objective-C
 CG and Quartz 2D drawing engine define simple but powerful CG and Quartz 2D drawing engine define simple but powerful

graphics primitives
 Graphics context
 Transformations
 Paths
 Colors Colors
 Fonts
 Painting operations

Graphics Context

 All drawing is done into an opaque graphics context

p

 Draws to screen, bitmap buffer, printer, PDF, etc
 Graphics context setup automatically before invoking

drawRect
 Defines current path, line width, transform, etc

A h hi i hi d R b lli Access the graphics context within drawRect: by calling
(CGContextRef) UIGraphicsGetCurentContext(void);

 Use CG calls to change settingsg g

 Context only valid for current call to drawRect
 Do not cache the current graphics context in drawRect: to use

later!

CG Wrappers

 Some CG functionality wrapped by UIKit

pp

 UIColor
 Convenience for common colors
 Easily set the fill and/or stroke colors when drawing
UIColor *redColor = [UIColor redColor];
[redColor set];[redColor set];
//drawing will be done in red

 UIFont UIFont
 Access system font
 Get font by name
UIFont *font = [UIFont systemFontOfSize:14.0];
[myLabel setFont:font];

Simple Rect Example

// draw a solid color and shape

p p

-(void)drawRect: (CGRect)rect {
CGRect bounds = [self bounds];
[[UIColor grayColor] set];[[UIColor grayColor] set];
UIRectFill(bounds);
CGRect square = CGRectMake(10, 10, 50, 100);q ()
[[UIColor redColor] set];
UIRectFill(square);
[[UIColor blackColor] set];
UIRectFrame(square);

}}

Drawing More Complex Shapesg p p

 Common steps for drawRect: are
 Get current graphics context
 Define a path

S t l Set a color
 Stroke or fill path
 Repeat, if necessary Repeat, if necessary

Paths

 CoreGraphics paths define shapes
 Made up of lines, arcs, curves and rectangles
 Creation and drawing of paths are two distinct operations

 Define path first, then draw it

 Two parallel sets of functions for using paths
 CGContext “convenience” throwaway functions
 CGPath functions for creating reusable paths

CGC t t CGP thCGContext CGPath

CGContextMoveToPoint CGPathMoveToPoint

CGContextAddLineToPoint CGPathAddLineToPointCGContextAddLineToPoint CGPathAddLineToPoint

CGContextAddArcToPoint CGPathAddArcToPoint

CGContextClosePath CGPathSubPathCGContextClosePath CGPathSubPath

and so on……

Simple Path Example

// draw a shape and path

p p

-(void)drawRect: (CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();
[[UIColor grayColor] set];[[UIColor grayColor] set];
UIRectFill([self bounds]);
CGContextBeginPath(context);g ()
CGContextMoveToPoint(context, 75, 10);
CGContextAddLineToPoint(context, 10, 150);
CGContextAddLineToPoint(context, 160, 150);
CGContextClosePath(context);
[[UIColor redColor] setFill];[[UIColor redColor] setFill];
[[UIColor blackColor] setStroke];
CGContextDrawPath(context, kCGPathFillStroke);

}

Images & TextImages & Text

58

UIImage

 UIKit class representing an image

g

 Creating UIImages (Fetching image in application bundle)
 Use +[UIImage imageNamed: (NSString *)name]
 Include file extension in file name, e.g. @”myimg.jpg”

 Creating UIImages (Read from file on disk)
U [UII i i Wi hC OfFil (NSS i *) h] Use –[UIImage initWithContentsOfFile: (NSString *)path]

 Creating UIImages (From data in memory)
 Use [UIImage initWithData: (NSData *)data] Use –[UIImage initWithData: (NSData *)data]

Creating Images from a Context

 Need to dynamically generate a bitmap image

g g

 Same as drawing a view
 General steps

 Create a special CGGraphicsContext with a size
 Draw

C h bi Capture the context as a bitmap
 Clean up

Bitmap Image Example

// creating an image from a current graphics context

p g p

-(UIImage *)polygonImageOfSize: (CGSize)size {
UIImage *result = nil;
UIGraphicsBeginImageContext(size); // create CGGraphicsContextUIGraphicsBeginImageContext(size); // create CGGraphicsContext

// call your drawing code …y g

result = UIGraphicsGetImageFromCurrentContext(); // capture
UIGraphicsEndImageContext(); // clean up
return result;

}}

Getting Image Data

 Given UIImage, want PNG or JPG representation

g g

 NSData *UIImagePNGRepresentation(UIImage * image);
 NSData *UIImageJPGRepresentation(UIImage * image);

UII l h CGI hi h ill i UIImage also has a CGImage property which will give
you a CGImageRef to use with CG calls

Drawing Text & Images

 You can draw UIImages in -drawRect

g g

 [UIImage drawAtPoint: (CGPoint)point]
 [UIImage drawInRect: (CGRect)rect]

[UII d A P tt I R t (CGR t) t] [UIImage drawAsPatternInRect: (CGRect)rect]

 You can draw NSString in –drawRect
 [NSString drawAtPoint: (CGPoint)point withFont: (UIFont *)font] [NSString drawAtPoint: (CGPoint)point withFont: (UIFont *)font]

References

 Lecture 4 & 5 Slide from iPhone Application
Development (Winter 2010) @Stanford University

