
Memory Management,
Extension, Protocol, Generic

448460-1
Fall 2015

10/05/2015
Kyoung Shin Park

Multimedia Engineering
Dankook University

Overview

 Automatic Reference Counting
 Extension
 Protocol
 Generic

2

Automatic Reference Counting

 Automatic Reference Counting (ARC) to manage app
memory usage. ARC automatically frees up the memory
used by instances when they are no longer needed.

class Person { // Person class
let name: String
init(name: String) {

self.name = name
print(“\(name) is being initialized”)

}
deinit {

print(“\(name) is being deinitialized”)
}

}
3

Automatic Reference Counting

 Strong reference protects the referred object from getting
deallocated by ARC by increasing it’s retain count by 1.

var per1: Person? // automatically initialized with nil
var per2: Person? // automatically initialized with nil
var per3: Person? // automatically initialized with nil
per1 = Person(name: “Steve”) // “Steve is being initialized” strong
reference increases retain count = 1
per2 = per1 // strong reference increases retain count = 2
per3 = per1 // strong reference increases retain count = 3
per1 = nil // retain count = 2
per2 = nil // retain count = 1
per3 = nil // retain count = 0 calls deinit “Steve is being deinitialized”

4

Reference Cycle

class Apartment {
var tenant: User?

}
class User {

var home: Apartment?
func moveIn(apt: Apartment) {

self.home = apt
apt.tenant = self

}
}
var renters = [“John”: User()] // John: User init
var apts = [100: Apartment()] // 100: Apartment init
renters[“John”]!.moveIn(apts[100]!) // ! is used to unwrap optional
renters[“John”] = nil // After User & Apartment=nil, both retain count=1
apts[100] = nil // Reference Cycle (no deinit is called!!) Memory leak!!!

5

Weak Reference to resolve Strong
Reference Cycle
class Apartment {

weak var tenant: User? // weak reference (no retain count increase)
}
class User {

weak var home: Apartment? // weak reference to Apartment
func moveIn(apt: Apartment) {

self.home = apt
apt.tenant = self

}
} // All weak variables MUST be mutable.
var renters = [“John”: User()] // John: User is being initialized
var apts = [100: Apartment()] //100: Apartment is being initialized
renters[“John”]!.moveIn(apts[100]!)
renters[“John”] = nil // John: User is being deinitialized
apts[100] = nil // 100: Apartment is being deinitialized

6

Unowned Reference to resolve Strong
Reference Cycle
 Unowned reference doesn’t keep a strong reference.

However, it’s assumed to always have a value.
class Customer {

let name: String
var card: CreditCard? // strong reference to CreditCard
init(name: String) {

self.name = name
print(“\(name) is being initialized”)

}
deinit {

print(“\(name) is being deinitialized”)
}

}
7

Unowned Reference

8

 Unowned reference is always defined as a nonoptional.
class CreditCard { // CreditCard always belongs to Customer

let number: UInt64
unowned let customer: Customer // unowned reference to Customer

(no retain count increase)
init(number: UInt64, customer: Customer) {

self.number = number
self.customer = customer
print(“\(number) is being initialized”)

}
deinit {

print(“\(number) is being deinitialized”)
}

}

Unowned Reference

9

 Customer allows CreditCard to be nil, but CreditCard
cannot have Customer to be nil. That is, CreditCard is
always owned by Customer. Use unowned reference to
resolve a strong reference cycle.

 In the previous example, both User and Apartment can
have a property (Apartment and User) allowed to be
nil. Use weak reference to resolve a strong reference
cycle.

var john: Customer?
john = Customer(name: “John”) // John is being initiailized
john!.card = CreditCard(number: 12345, customer: john!) // 12345 is
being initiailized
john = nil // Both Person and CreditCard are being deinitialized!!

Unowned Reference and Implicitly
Unwrapped Optional

10

class Country { // Country must always have a capital city
let name: String
var capitalCity: City! // implicitly unwrapped optional property
init(name: String, capitalName: String) {

self.name = name
self.capitalCity = City(name: capitalName, country: self)

}
}
class City { // City always belongs to Country

let name: String
unowned let country: Country // unowned reference
init(name: String, country: Country) {

self.name = name
self.country = country

}
}

Unowned Reference and Implicitly
Unwrapped Optional

11

 Both Country and City should always have a value, (i.e.,
neither property should ever be nil once initialization is
complete). Use unowned property on one class with an
implicitly unwrapped optional property on the other
class, to resolve a strong reference cycle.

var nation = Country(name: “Korea”, capitalName: “Seoul”) // both
City and Country are being initialized, without creating a strong
reference cycle
print(“\(nation.name) capital city is \(nation.capitalCity.name)”)

var nation2: Country? = Country(name: “Canada”, capitalName:
“Ottawa”) // both City and Country are being initialized
print(“\(nation2!.name) capital city is \(nation2!.capitalCity.name)”)
nation2 = nil // both Country and City are being deinitialized

Strong Reference Cycles for Closures

 A strong reference cycle can also occur if you assign a
closure to a property of a class instance, and the body of
that closure captures the instance.

 A strong reference cycle occurs because closures (like
classes) are reference types. Rather than two class
instances, it’s a class instance and a closure that are
keeping each other alive.

12

Strong Reference Cycles for Closures

13

class Car {
var totalMileage: Double = 0.0
var totalGasUsed: Double = 0.0
lazy var gasMilage: () -> Double = { // closure

return self.totalMileage / self.totalGasUsed
}
func drive(mileage: Double, _ gas: Double) {

self.totalMileage = mileage; self.totalGasUsed = gas
}
deinit {

print(“Car is being deinitialized”)
}

}
var myCar: Car? = Car()
myCar!.drive(15000, 700)
print(“gasMileage= ” + myCar!.gasMilage().description) // 21.4285..
myCar = nil // deinit is NOT being called

Closure Capture List

 You resolve a strong reference cycle between a closure
and a class instance by defining a capture list as part of the
closure’s definition.

 Defining a capture list
lazy var someClosure: (Int, String) -> String = {

[unowned self, weak delegate = self.delegate!] (index: Int,
stringToProcess: String) -> String in

// closure body
}
lazy var someClosure: Void -> String = {

[unowned self, weak delegate = self.delegate!] in
// closure body

}
14

Closure Capture List

class Car {
// 중간생략…
lazy var gasMilage: () -> Double = { // closure capture list

[unowned self] in
return self.totalMileage / self.totalGasUsed

}
}
var myCar: Car? = Car()
myCar!.drive(15000, 700)
print(“gasMileage= ” + myCar!.gasMilage().description) // 21.4285..
myCar = nil // Car is being deinitialized

15

Define a Capture in a Closure as a Weak
and Unowned Reference
 Define a capture in a closure as an unowned reference

when the closure and the instance it captures will always
refer to each other, and will always be deallocated at the
same time.

 Conversely, define a capture as a weak reference when
the captured reference may become nil at some point in the
future. Weak references are always of an optional type,
and automatically become nil when the instance they
reference is deallocated. This enables you to check for their
existence within the closure’s body.

16

Protocols

 A protocol is a TYPE, except..
 It has no storage or implementation associated with it
 Any storage or implementation required to implement the protocol

is in an implementing type
 An implementing type can be any class, struct or enum
 Otherwise, a protocol can be used as a type to declare variables,

as a function parameter, etc

 There are three aspects to a protocol
 The protocol declaration (what properties and methods are in the

protocol)
 The declaration where a class, struct or enum says that it

implements a protocol
 The actual implementation of the protocol in said class, struct, or

enum
17

Protocols

 Declaration of the protocol itself
protocol SomeProtocol: class, InheritedProtocol1, InheritedProtocol2 {

var someProperty: Int { get set }
func aMethod(arg1: Double, arg2: String) -> Type
mutating func changeIt()
init(arg: Type)

}
 Anyone that implements SomeProtocol must also implement

InheritedProtocol1 and InheritedProtocol2
 You must specify whether a property is get only or both get and set
 Any functions that are expected to mutate the receiver should be

marked mutating (unless you are going to restrict your protocol to
class implementers only with class keyword)

 You can even specify that implementers must implement a given
intializer 18

Protocols

 Implement that protocol
class SomeClass: SuperClass, SomeProtocol1, SomeProtocol2 {

// implementation of SomeClass here, including..
required init(…)

}
 Claims of conformance to protocols are listed after the superclass for

a class
 Obviously, enums and structs would not have the superclass part
 Any number of protocols can be implemented by a given class, struct,

or enum
 In a class, inits must be marked required (or otherwise a subclass

might not conform)

19

Protocols

 Implement that protocol via extension
extension Something: SomeProtocol {

// implementation of SomeProtocol here
// no stored properties though

}
 You are allowed to add protocol conformance via an extension

20

Protocols

protocol Bird { // some protocol
var name: String { get set }
var canFly: Bool { get }

}
protocol Flyable { // another protocol

var airSpeed: Double { get }
}
struct FlappyBird: Bird, Flyable { // struct inherits protocols

var name: String
let canFly = true
let flappyAmplitude: Double
var airSpeed: Double {

return 3 * flappyAmplitude
}

}
21

Protocols

protocol Moveable {
mutating func moveBy(p: CGPoint)

}
class Car: Moveable {

var point: CGPoint
func moveBy(p: CGPoint) { … } // don’t need mutating in class
func drive() { … }
init(point: CGPoint) { self.point = point }

}
struct Shape: Moveable {

var point: CGPoint
mutating func moveBy(p: CGPoint) { … } // only in struct or enum
func draw() { … }

}
let sonata: Car = Car(point: CGPoint(x: 1, y: 1)) // sonata (1,1)
let square: Shape = Shape(point: CGPoint(x: 2, y: 2)) // square (2,2)

22

Protocols

var thingToMove: Moveable = sonata
thingToMove.moveBy(CGPoint(x: 1, y: 1)) // sonata (2,2) square (2,2)
(thingToMove as! Car).drive() // sonata drive
thingToMove = square
(thingToMove as! Square).draw() // square draw
let thingsToMove: [Moveable] = [sonata, square] // sonata & square (2,2)
for var s in thingsToMove {

s.moveBy(CGPoint(x: 1, y: 1)) // sonata (3,3) square (3,3)
}
// sonata (3,3) square (2,2)
func slide(var slider: Moveable) {

slider.moveBy(CGPoint(x: 2, y:3)) // sonata (5,6) square (4,5)
}
slide(sonata) // sonata (5,6)
slide(square) // square (4,5)
// sonata (5,6) square (2,2)

23

Protocols

protocol Pullable: class { // use only in the class (not struct or enum)
func pull()

}
class Thing {
}
//class Boards: Thing, Pullable {
//} // compile error (due to protocol method is required; it needs pull()
method implementation)
class Boards: Thing, Pullable {

func pull() {
print(“It is pullable object”)

}
}
let b = Boards()
b.pull() // It is pullable object

24

Protocols

@objc protocol Pullable { // Obj-C style protocol requirement optional
func pull()

}
func performPull(object: Thing) {

if let pullableObject = object as? Pullable { // as? returns Pullable or nil
pullableObject.pull()

}
if object is Pullable { // is returns true or false

(object as! Pullable).pull() // as! returns Pullable or run time error
}
//var pullable = object as! Pullable // as! returns Pullable or run time erro

}
performPull(Boards()) // It is pullable object. It is pullable object
performPull(Thing()) // (cannot cast to Pullable)

25

Protocols

 Common Protocols
protocol Equatable

==(_: _:) -> Bool
protocol Hashable (inherits from Equatable)

var hashValue: Int { get }
protocol Comparable (inherits from Equatable)

<(_: _:) -> Bool
protocol CustomStringConvertible // (Printable in Swift 1)

var description: String { get }
protocol CustomDebugStringConvert

var debugDescription: String { get }

26

Protocol Extensions

 In Swift 1, protocols were like interfaces to specify a set of
properties and methods that a class, struct, or enum
would then conform to.

 In Swift 2, you can extend protocols and add default
implementations for properties and methods.

extension CustomStringConvertible {
var uppercaseDescription: String {

return “\(self.description.uppercaseString)!!”
}

}
let greetings = [“Hello”, “Hi”]
print(greetings) // [“Hello”, “Hi”]
print(“\(greetings.description)”) // [“Hello”, “Hi”]
print(“\(greetings.uppercaseDescription)”) // [“HELLO”, “HI”]!!27

 String Extension
extension String { // String extension

func beginsWith(str: String) -> Bool {
if let range = self.rangeOfString(str) {

return range.startIndex == self.startIndex
} return false

}
func endWith(str: String) -> Bool {

if let range = self.rangeOfString(str, options:
NSStringCompareOptions.BackwardsSearch) {

return range.endIndex == self.endIndex
} return false

}
}

Extension

// String extension
print(str.beginsWith(“H”) // true
print(str.beginsWith(“He”) // true
print(str.beginsWith(“Hello!”) // false
print(str.endsWith(“o”) // true
print(str.endsWith(“lo”) // true

Extension

 Generic enables you to write flexible, reusable functions
and types that can work with any type.

 Type Constraint Syntax
func someFunction<T: SomeClass, U: SomeProtocol>(someT: T,
someU: U) {

// function body
}

Generic

func swapTwoInts(inout a: Int, inout b: Int) {
let tempA = a
a = b
b = tempA

}
func swapTwoDoubles(inout a: Double, inout b: Double) {

let tempA = a
a = b
b = tempA

}
func swapTwoValues<T>(inout a: T, inout b: T) {

let tempA = a
a = b
b = tempA

}

Generic

struct IntStack {
var elements = [Int] ()
mutating func push(element: Int) {

elements.append(element)
}

mutating func pop() -> Int {
return elements.removeLast()

}
}

Generic

struct StringStack {
var elements = [String] ()
mutating func push(element: String) {

elements.append(element)
}

mutating func pop() -> String {
return elements.removeLast()

}
}

Generic

struct Stack<T> {
var elements = [T] ()
mutating func push(element: T) {

elements.append(element)
}

mutating func pop() -> T {
return elements.removeLast()

}
}
var intStack = Stack<Int>()
intStack.push(50)
print(intStack.pop()) // 50
var stringStack = Stack<String>()
stringStack.push(“Hello”)
print(stringStack.pop()) // Hello

Generic

 When you extend a generic type, you do not provide a type
parameter list as part of the extension’s definition.

extension Stack {
var topItem: Element? {

return items.isEmpty ? Nil : items[items.count – 1]
}

}

if let topItem = stackOfStrings.topItem {
print(“The top item on the stack is \(topItem)”)

}

Generic Extension

 Lecture 6 Slide from Developing iOS8 Apps with Swift
(Winter 2015) @Stanford University

References

