Building an iPhone Application

448460-1
Fall 2015
10/05/2015
Kyoung Shin Park
Multimedia Engineering
Dankook University

Overview

o Building an iOS Application (Swift)
o0 Model-View-Controller Design

o Interface Builder and Nib Files

o Controls and Target-Action

Create a New Project

.

o] el B i o e s
PSSR i

Swwm n mm G ey

i N D b L e e

Create a New Project

Croces & ieopa W for poe e st

iZii

Bjgmatad

Pormmaren | Loy

BEx

dpgirgar

Frarmeaeas b Livarg

Epebwsd Py

D

(=

- . 1
[S T Pug Asiat g o Ty
A EEn FPE R Aeghoars
®

O

R AR

Fan i cmsren 0 ot g sed e i s e e B e

4w e b B e meda doeima W e b S o e

4

Create a New Project

Xcode

O sorkors bor yoar oy st

: e

Megamiwion e Sem

Barites MR = s i |l
| g R =]
Dlpmicms: L ywesadl n

i Fien i
B iy L Torm
(R TR

Open your Storyboard

Build the Basic Ul

*
-

e
“BIi
e
i P =]
N [
v B AT [i
e | BN |
——a (-]
o]
T (= ||
T B e e a
L g ST P
e
Y ok v P

[Eear—

Connect the Ul to Code

Running a Simulator

Scheme

2] » (B! #% FoodTracker | @ IPhone 6
0=

QAo = B |®
Tracker 1] &% FoodT
FoodTracker

« AppDelagata.awiit ¥ Identity
= VigwCGontroberswift
Main.storyboand

&

ht N
{

W Asmats. xcassets
LavnchScreen. storyboarnd
Info. pdist

FoodTrackerTosts

Products

AppDelegate.swift

Building an iOS Application (Swift)

o AppDelegate.swift create the entry point to your app
and a run loop that delivers input events to your app.
= @UIlApplicationMain attribute creates an application object that
is responsible for managing the life cycle of the app and app
delegate object.
= AppDelegate class contains a single property: window.
var window: UIWindow?
u AppDelegate class also contains template implementations of
important methods.
func application(application: UlApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject:
AnyObject]?) -> Bool
func applicationWillResignActive(application: UlApplication)
func applicationDidEnterBackground(application: UlApplication)
func applicationWillEnterForeground(application: UlApplication)
func applicationDidBecomeActive(application: UlApplication)
func aoplicationWillTerminate(apbolication: UlApplication)

ViewController.swift

Main.storyboard

o A custom subclass of UlViewController named
ViewController.

= You override the methods defined on UlViewController, such
as viewDidLoad() and didReceiveMemoryWarning().

// After instantiation and outlet setting, viewDidLoad is called
override func viewDidLoad() {

super.viewDidLoad()

// do any additional setup of my app, typically from a nib
}

m You implement your own custom methods.

o A storyboard is a visual representation of the app’s user
interface. You use storyboards to lay out the flow (or
story) that drives your app.

o The background of the storyboard is the canvas. You use

the canvas to add and arrange Ul elements.
O The arrow that points to the left side of.the scene on the

canvas is the storyboard entry point (i.e., tlﬁfs scene is
loaded first when the app starts).

)

Anatomy of an iOS Application

iIOS Application Lifecycle in Swift

o Compiled code
= Your code
= Framework

o Nib files
= Ul elements and other objects
= Details about object relationships

O Resources (images, sounds, strings, etc)
o Info.plist file (application configuration)

storyboard, xib

I launch screen file view controller

I main storyboard file]—-P UIWindow

'y ry

application:djdBecomeActive

UlApplication object
your app

F 1

delegate

#UlApplicationMain

UIKit Framework

Delegation

o UIKit provides standard interface elements
= button, label, slider, tableview, etc
o Every application has a single instance of UlApplication
= Singleton design pattern
let app = UlApplication.sharedApplication()
m Orchestrates the lifecycle of an application
Dispatches events
Manages status bar, application icon badge
Rarely subclassed; Uses delegation instead

o Delegate allows one object to act on behalf of another
object

o Control passed to delegate objects to perform
application specific behavior

o Avoids need to subclass complex objects
o Many UIKit classes use delegates

= UlApplication T —

i Ea N T —
= UlTableView mindershovlecloser o]
- Ulextriek - .

N

Info.plist file

o Property List (often XML), describing your application
= |Icon appearance

Status bar style (default, black, hidden)

Orientation

Uses Wifi networking

System Requirements

o Can edit most properties in Xcode by clicking on
Info.plist

o Can edit it as raw XML by Opening As Source Code.

o Usually you edit Info.plist settings by clicking on your
project in the Navigator.

Model View Controller

20

Model View Controller

O The Model-View-Controller (MVC) design pattern assigns
objects in an application one of three roles: model, view,
or controller.

User action—== Controller | Update

View —-—— Lipdate — Notify Model

Model = What you application is (but not how it is displayed)
Controller = How your Model is presented to the user (Ul logic)
View = Your Controller's minions

Model

O Manages the application data and state
o Not concerned with Ul or presentation
o Often persists somewhere

o Same model should be reusable, unchanged in
different interfaces

View

O Present the Model to the user in an appropriate
interface

O Allows user to manipulate data
o Does not store any data (except to cache state)
O Easily reusable & configurable to display different data

Controller

O Intermediary between Model & View

o Updates the view when the model changes

o Updates the model when the user manipulates the view
o Typically where the application logic lives

Model View Controller

/
Controller \

outlets

actions (i,
notify target

& P

Model

View

il

Interface Builder and Nib

26

Nib Files

Nib Loading

O Helps you design the View in MVC
m Layout user interface elements
= Add controller objects
= Connect the controller and Ul

O At runtime, objects are unarchived
m Values/settings in Interface Builder are restored
m Ensures all outlets and actions are connected
m Order of unarchiving is not defined
o If loading the nib automatically creates objects and
order is undefined, how do | customize?

m awakeFromNib

awakeFromNib

o awakeFromNib method is sent to all objects that come
out of a storyboard (including your Controller).

O It happens before outlets are set (i.e., before the MVC is
loaded).

O You should put your code somewhere else if at all
possible (e.g., viewDidLoad or viewWillAppear)

Controls and Target/Action

30

Controls — Events

O View objects that allow users to initiate some type of
action

O Respond to variety of events

= Touch events
touchDown
touchDragged (entered, exited, drag inside, drag outside)
touchUp

= Value changed

= Editing events
editing began
editing changed
editing ended

Controls — Target/Action

o When event occurs, actions is invoked on target object

target: myObject
action: @seléctor(buttonPressed)

UlControlEventTouchUplnside event: UiControlEventTouchUplnside

Controller

(void)buttonPressed

Action Methods

Multiple Target-Actions

o 3 different flavors of action method selector types
= Simple no-argument selector
func increase() { // bump the number of sides of the polygon up
polygon.numberOfSides += 1
}
= Single argument selector control is ‘'sender’
func adjustNumberOfSides(sender: AnyObject) { // if it is a slider
if let slider = sender as? UlSlider {
polygon.numberOfSides = slider.value
}
}
= Two arguments in selector (sender & event)
func touchesBegan(touches: Set<NSObject>, withEvent event: UlEvent)
{..}
0 UlEvent contains details about the event that took
place

o Contols can trigger multiple actions on different
targets in response to the same event

o Different than Cocoa on the desktop where only one
target actions is supported

o Different events can be setup in Interface Builder

Delegation

Delegation

o Control passed to delegate objects to perform
application specific behavior

O How it plays out

Create a delegation protocol (defines what the View wants the
Controller to take care of)

Create a delegate property in the View whose type is that
delegation protocol

Use the delegate property in the View to get/do things it can't
own or control

Controller declares that it implements the protocol

Controller sets self as the delegate of the View by setting the
delegate property

Implement the protocol in the Controller

Model View Controller

Demo

(Controller \

calculator

prepitationTextField e
temperatureTextField
ariditylndexTextField

L _ J

AriditylndexCalculator
-calculateAriditylndex

View

]

Model View Controller

/ Controller

~

calculator
height/weight/ageTextField
genderSelector
activityPicker |
bmi/sw/dciTextField J
™~ actions (e
L button
BMICalculator y,
-calculateBMI K —
-calculateStandardWeight

-calculateDailCalorylntake

]

Views

40

View Fundamentals

O A view (i.e., UlView subclass) represents a rectangular
area on screen

o Draws content and handles events in that rectangle
o Subclass of UIResponder (event handling class)

o0 Views arranged hierarchically
m Every view has only one superview — var superview: UlView?

m Every view has zero or more subviews — var subviews: [UIView]
It's actually [AnyObject]
= Subview order (in that array) matters: those later in the array are
on top of those earlier

m A view can clip its subviews to its own bounds or not (the
default is not to)

View Hierarchy - UIWindow

o Views live inside of a window
o UlWindow is actually just a view
= Adds some additional functionality specific to top level view
o Usually only one UlWindow for an iPhone application
m Contains the entire view hierarchy
m Set up by default in Xcode template project

View Hierarchy - Manipulation

O Hierarchy is most often constructed in Xcode graphically
m Even custom views are usually added to the view hierarchy using
Interface Builder
O It can be done in code using UlView methods
addSubview(aView: UlView) // sent to aView's superview
removeFromSuperview() // sent to the view you want to remove

O Manipulate the view hierarchy manually
insertSubview: atindex:
insertSubview: belowSubview:
insertSubview: aboveSubview:
exchangeSubviewAtIndex: withSubviewAtindex:

View Hierarchy

0 Where does the view hierarchy start?

The top of the (useable) view hierarchy is the Controller's var
view: UlView

This simple property is a very important thing to understand!
This view is the one whose bounds will change on rotation,
for example.

This view is likely the one you will programmatically add
subviews to (if you ever do that).

All of your MVC's View's UlViews will have this view as an
ancestor.

It's automatically hooked up for you when you create an MVC
in Xcode.

Initializing a UlView

o A UlView's initializer is different if it comes out of a
storyboard
init(frame: CGRect) // initializer if the UlView is created in code
init(coder: NSCoder) // if the UlView comes out of a storyboard

o If you need an initializer, implement them both

func setup() { ... }

override init(frame: CGRect) { // designated initializer
super.init(frame: frame)
setup()

}

required init?(coder aDecoder: NSCoder) {// required initializer
super.init(coder: aDecoder)
setup()

Initializing a UlView

o Another alternative to initializers in UlView

= awakeFromNib() // this is only called if the UlView came out
of a storyboard

= This is not an initializer (it's called immediately after initialization
is complete).

= All objects that inherit from NSObject in a storyboard are sent
this (if they implement it).

= Order is not guaranteed, so you cannot message any other
objects in the storyboard here.

View-related Data Structures

o CGFloat

= Always use this instead of Double or Float for anything to do
with a UlView's coordinate system, let val = CGFloat(doubleVal)

o CGPoint
var point = CGPoint(x: 80, y: 54)

o CGSize
var size = CGSize(width: 144, height:72)
size.width += 42.5 | e | | I "
size.height += 75 et ‘-’"_Iﬁ“ " :

Ly

View-related Data Structures

O CGRect
let rect = CGRect(origin: point, size: size)
O Lots of convenient properties and functions on CGRect
var minX: CGFloat // left edge
var midY: CGFloat // midpoint vertically
intersects(CGRect) -> Bool // does this CGRect intersect this

other one?

contains(CGPoint) -> Bool // does this CGRect contain the given

point? - B !
e '_'-'“':':| -

UlView Coordinate System

(0,0)

550

> +X

o [Origin is upper left
o |Units are points, not pixels

of

400

= Pixels are the minimum-sized unit of drawing your device is capable

= Points are the units in the coordinate system
= How many pixels per point are there? contentScaleFactor: CGFloat

o [The boundaries of where drawing happens

m var bounds: CGRect system
= This is the rectangle containing the drawing space in its own

+
yv coordinate system

o Where is the UlView?
m var center: CGPoint // the center of a UlView (superview's coord)
= var frame: CGRect // the rect containing a UlView (superview's coor

UlView Coordinate System

(0, 0) 550 View A Frame:
- e S > +X Origin: (0, 0)
g : Size: 550 x 400
' il View A Bounds:
View Origin: (0, 0)
Size: 550 x 400
View B Frame:
Origin: (200, 100)
Size: 200 x 250
View B Bounds:
Origin: (0, 0)
Size: 200 x 250

400

+y
|:|VView’s location and size expressed in two ways:
m Frame is in superview’s coordinate system
m Bounds is in local coordinate system
= is the center of your view in your superview's coordinates

Transform

O 45° Rotation

View A

Frame

o The smallest rectangle in the superview's coordinate
system that fully encompasses the view itself

— 14_0..&5 320 View &

Origin: (300, 225)
View B Frame:
Origin: (145, 65)
Size: 320 x 320
View B Bounds:
Origin: (0, 0)
Size: 200 x 250

3

Frame and Bounds

o If you are using a view, typically you use frame
o If you are implementing a view, typically you use bounds
O Matter of perspective

m From outside it's usually the frame
= From inside it's usually the bounds

o Examples
m Creating a view, positioning a view in superview — use frame
= Handling events, drawing a view — use bounds

Creating Views

54

Where do views come from?

O Most often your views are created via your storyboard
m Xcode's Object Paletter has a generic UlView you can drag out

m After you do that, you must use Identity Insepctor to changes its
class to your subclass

o e _ .
o i e m 1 s Chis LIRS Tl
LR T vovgunen & : =
N BT i e o o - -
Tt Mardsar o Submn d
®
— - [iiv il [LIE T
Oapd D 1
\ : 5, e d
1 Lok | irhames - piethngi + y N
1 feziny [} Shoow With Salattns A ' Il ‘I
~——memmemmmer=! 1 1
[ty R
it el ¥ : :
T e
B momee | '
T i b 1 1
- Wi rigiiem Vil Vb= 1 Ascnnaiukty [Erahied k|] 1
e i) e il
v Lakal : :
Vo 1 g o o il
| = e i s A
- " = N e s

A e b e e s
.

Manual Creation

O You can create a UlView via code
let myView = UlView(frame: myFrame) // frame initializer

O Example
let labelRect = CGRect(x: 20, y:20, width: 100, height: 50)

let label = UlLabel(frame: labelRect) // UlLabel is a subclass of
UlView

label.text = “Number of sides: ”
view.addSubview(label)

B
i

Defining Custom Views

o When to create my own UlView subclass?
= | want to do some custom drawing on screen
o For custom drawing, you override
m override func drawRect(regionThatNeedsToBeDrawn: CGRect)
O Never call drawRect!! Instead, if your view needs to be
redrawn, let the system know that by calling
= setNeedsDisplay()
m setNeedsDisplaylnRect(regionThatNeedsToBeRedrawn:
CGRect)
o For example (PolygonView.m)
func setNumberOfPolygonSides(sides: Int) {
numberOfSides = sides
self.setNeedsDisplay/()

Drawing Views

58

CoreGraphics

o UIKit offers very basic drawing functionality
m UIRectFill(CGRect rect);
m UlRectFrame(CGRect rect);

o CoreGraphics (CG): Drawing APIs

m CG is a C-based (non object-oriented) API

m CG drawing API define simple but powerful graphics primitives
Graphics context
Transformations
Paths
Colors
Fonts
Painting operations

CoreGraphics Concepts

o Common steps for drawRect: are

m You get a graphics context to draw into (could be printing
context, drawing context, etc). The function
UlGraphicsGetCurrentContext() gives a context you can use in
drawRect

m Create paths (out of lines, arcs, transform, etc)

m Set drawing attributes like colors, fonts, textures, linewidths,
linecaps, etc

m Stroke or fill the created paths with the given attributes

Paths

UlBezierPath

o CoreGraphics paths define shapes

o Made up of lines, arcs, curves and rectangles

o Creation and drawing of paths are two distinct operations
m Define path first, then draw it

o Two parallel sets of functions for using paths

m CGContext “convenience” throwaway functions
m CGPath functions for creating reusable paths

CGContextMoveToPoint CGPathMoveToPoint
CGContextAddLineToPoint CGPathAddLineToPoint
CGContextAddArcToPoint CGPathAddArcToPoint
CGContextClosePath CGPathSubPath

and so on......

0 Object-oriented UlBezierPath class

m Same as core graphics, but captures all the drawing with a
UlBezierPath instance

m UlBezierPath automatically draws in the “current” context
(drawRect sets this up for you)

m Methods for adding to the UlBezierPath (lineto, arcs, etc) and
setting linewidth, etc

= Methods for stroke or fill the UlBezierPath

Simple Path Example /\

Drawing

// draw a shape and path

override func drawRect(rect: CGRect) {
let path = UlBezierPath() // create a UlBezierPath
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140,150))
path.addLineToPoint(CGPoint(10,150))
path.closePath() // close the path
UlColor.greenColor().setFill() // set attributes & stroke/fill
UlColor.redColor().setStroke() // a method in UlColor
path.lineWidth = 3.0 // a property in UlBezierPath
path.fill() // fill with green color
path.stroke() // stroke line with red color

O You can also draw common shapes with UlBezierPath

let roundRect = UlBezierPath(roundedSet: aCGRect,
cornerRadius: aCGFloat)

let oval = UlBezierPath(ovallnRect: a CGRect)

o Clipping your drawing to a UlBezierPath's path
addClip() // you could clip to a rounded rect to enforce the edges
of a playing card

o Hit detection

func containsPoint(CGPoint) -> Bool // returns whether the point
is inside the path (the path must be closed. The winding rule can
be set with usesEvenOddFillRule property.)

UlColor

View Transparency

o Colors are set using UlColor

m There are type methods for standard colors, e.g. let greenColor
= UlColor.greenColor()

myLabel.textColor = UlColor.blueColor() // blue label text
m You can also create them from RGB, HSB, or even a pattern
(using Ulimage)
o Background color of a UlView
var backgroundColor: UlColor

o Colors can have alpha (transparency)

let transparentWhite =
UlColor.whiteColor().colorWithAlphaComponent(0.5) // alpha is
between 0.0 (fully transparent) and 1.0 (fully opaque)
view.backgroundColor = transparentWhite // set background
color of view to the UlColor with alpha

o What happens when views overlap and have transparency?
= Subviews list order determines who is in front

m Lower ones (earlier in the array) can “show through” transparent
views on top of them

= Transparency is not cheap, by the way, so use it wisely
o When you are drawing, you can draw with transparency
m By default, drawing is full opaque!
o You can hide a view completely without removing it from
view hierarchy
var hidden: Bool

= A hidden view will draw nothing on screen and get no events
either

= Not as uncommon as you might think to temporarily hide a view

UlFont

O Fonts are set using UlFont
myLabel.font = UlFont(name: “Helvetica”, size: CGFloat(20))

O To get preferred font for a given text style using UlIFont
type method
class func preferredFontForTextStyle(UIFontTextStyle) -> UlFont
m Some of the styles (see UIFontDescriptor documentation)
UlFontTextStyle.Headline
UlFontTextStyle.Body
UlFontTextStyle.Footnote

O There are also “system fonts”
class func systemFontOfSize(pointSize: CGFont) -> UlFont
class func boldSystemFontOfSize(pointSize: CGFont) -> UlFont

Images & Text

68

Drawing Text

Drawing Images

o Usually we use a UlLabel to put text on screen
= if we want to draw text in our drawRect
let color: UlColor = UlColor.darkGrayColor() // color
let font = UIFont(name: "Helvetica Neue", size: 18) // font
var paraStyle = NSMutableParagraphStyle() // line spacing
paraStyle.lineSpacing = 6.0
let skew = 0.1 // obliqueness
let baselineAdjust = 1.0

var attributes: NSDictionary =

[NSForegroundColorAttributeName: color,
NSFontAttributeName: font, NSParagraphStyleAttributeName:
paraStyle, NSObliquenessAttributeName: skew,
NSBaselineOffsetAttributedName: baselineAdjust]

let text: NSString = “hello”

text.drawIlnRect(CGRectZero, withAttributes: attributes)

o There is a UlLabel-equivalent for images: UllmageView
= But, you might want to draw the image inside your drawRect
o Creating a Ullmage object
let image: Ullmage? = Ullmage(named: “"foo”) // optional
= You add foo.jpg to your project in the Images.xcassets file

= Images will have different resolutions for different devices (all
managed in Images.xcassets)

O You can also create one from files in the file system
let image: Ullmage? = Ulimage(contentsOfFile: aString)

let image: Ullmage? = Ulimage(data: anNSData) // raw jpg, png,
tiff, etc

O You can even create one by drawing with Core Graphics
= UlGraphicsBeginimageContext(CGSize)

Drawing Images

References

o Once you have a Ullmage, you can blast its bits on
screen
let image: Ullmage =
image.drawAtPoint(aCGPoint) // upper left corner
image.drawlnRect(aCGRect) // scales the image to fit a CGRect
image.drawAsPatterninRect(aCGRect) // tiles the image

O Lecture 5&6&8&13 Slide from Developing iOS8 Apps with
Swift (Winter 2015) @Stanford University

a

o https://developer.apple.com/library/prerelease/ios/referen
celibrary/GettingStarted/DevelopiOSAppsSwift/Lesson2.h
tml#//apple_ref/doc/uid/TP40015214-CH5-SW1

