
Building an iPhone Application

448460-1
Fall 2015

10/05/2015
Kyoung Shin Park

Multimedia Engineering
Dankook University

2

Overview

� Building an iOS Application (Swift)
� Model-View-Controller Design
� Interface Builder and Nib Files
� Controls and Target-Action

3

Create a New Project

4

Create a New Project

5

Create a New Project

6

Xcode

7

Open your Storyboard

8

Build the Basic UI

9

Connect the UI to Code

10

Running a Simulator

11

Building an iOS Application (Swift)

� AppDelegate.swift create the entry point to your app
and a run loop that delivers input events to your app.
� @UIApplicationMain attribute creates an application object that

is responsible for managing the life cycle of the app and app
delegate object.

� AppDelegate class contains a single property: window.
var window: UIWindow?

� AppDelegate class also contains template implementations of
important methods.

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject:
AnyObject]?) -> Bool
func applicationWillResignActive(application: UIApplication)
func applicationDidEnterBackground(application: UIApplication)
func applicationWillEnterForeground(application: UIApplication)
func applicationDidBecomeActive(application: UIApplication)
func applicationWillTerminate(application: UIApplication)

AppDelegate.swift

� A custom subclass of UIViewController named
ViewController.
� You override the methods defined on UIViewController, such

as viewDidLoad() and didReceiveMemoryWarning().
// After instantiation and outlet setting, viewDidLoad is called
override func viewDidLoad() {

super.viewDidLoad()
// do any additional setup of my app, typically from a nib

}
� You implement your own custom methods.

ViewController.swift

� A storyboard is a visual representation of the app’s user
interface. You use storyboards to lay out the flow (or
story) that drives your app.

� The background of the storyboard is the canvas. You use
the canvas to add and arrange UI elements.

� The arrow that points to the left side of the scene on the
canvas is the storyboard entry point (i.e., this scene is
loaded first when the app starts).

Main.storyboard

� Compiled code
� Your code
� Framework

� Nib files
� UI elements and other objects
� Details about object relationships

� Resources (images, sounds, strings, etc)
� Info.plist file (application configuration)

Anatomy of an iOS Application iOS Application Lifecycle in Swift

� UIKit provides standard interface elements
� button, label, slider, tableview, etc

� Every application has a single instance of UIApplication
� Singleton design pattern
let app = UIApplication.sharedApplication()
� Orchestrates the lifecycle of an application
� Dispatches events
� Manages status bar, application icon badge
� Rarely subclassed; Uses delegation instead

UIKit Framework

� Delegate allows one object to act on behalf of another
object

� Control passed to delegate objects to perform
application specific behavior

� Avoids need to subclass complex objects
� Many UIKit classes use delegates

� UIApplication
� UITableView
� UITextField

Delegation

The delegate is automatically registered as an observer of notifications posted by
the delegating object. The delegate need only implement a notification method
declared by the framework class to receive a particular notification message.
This window object posts an NSWindowWillCloseNotification to observers, but
sends a windowShouldClose: message to its delegate.

� Property List (often XML), describing your application
� Icon appearance
� Status bar style (default, black, hidden)
� Orientation
� Uses Wifi networking
� System Requirements

� Can edit most properties in Xcode by clicking on
Info.plist

� Can edit it as raw XML by Opening As Source Code.
� Usually you edit Info.plist settings by clicking on your

project in the Navigator.

Info.plist file

20

Model View Controller

Model View Controller

� The Model-View-Controller (MVC) design pattern assigns
objects in an application one of three roles: model, view,
or controller.

Model = What you application is (but not how it is displayed)
Controller = How your Model is presented to the user (UI logic)
View = Your Controller’s minions

� Manages the application data and state
� Not concerned with UI or presentation
� Often persists somewhere
� Same model should be reusable, unchanged in

different interfaces

Model

� Present the Model to the user in an appropriate
interface

� Allows user to manipulate data
� Does not store any data (except to cache state)
� Easily reusable & configurable to display different data

View

� Intermediary between Model & View
� Updates the view when the model changes
� Updates the model when the user manipulates the view
� Typically where the application logic lives

Controller

Model View Controller

ControllerControllerControllerController

actionsactionsactionsactions

outletsoutletsoutletsoutlets

ModelModelModelModel

ViewViewViewView

targettargettargettarget
willwillwillwill diddiddiddid

shouldshouldshouldshould

datadatadatadata
atatatat countcountcountcount

notifynotifynotifynotify

26

Interface Builder and Nib

� Helps you design the View in MVC
� Layout user interface elements
� Add controller objects
� Connect the controller and UI

Nib Files

� At runtime, objects are unarchived
� Values/settings in Interface Builder are restored
� Ensures all outlets and actions are connected
� Order of unarchiving is not defined

� If loading the nib automatically creates objects and
order is undefined, how do I customize?
� awakeFromNib

Nib Loading

� awakeFromNib method is sent to all objects that come
out of a storyboard (including your Controller).

� It happens before outlets are set (i.e., before the MVC is
loaded).

� You should put your code somewhere else if at all
possible (e.g., viewDidLoad or viewWillAppear)

awakeFromNib

30

Controls and Target/Action

� View objects that allow users to initiate some type of
action

� Respond to variety of events
� Touch events

� touchDown
� touchDragged (entered, exited, drag inside, drag outside)
� touchUp

� Value changed
� Editing events

� editing began
� editing changed
� editing ended

Controls – Events

� When event occurs, actions is invoked on target object

target: myObject
action: @selector(buttonPressed)
event: UIControlEventTouchUpInside

Controls – Target/Action

UIControlEventTouchUpInside

Controller

(void)buttonPressed

Calculate

� 3 different flavors of action method selector types
� Simple no-argument selector
func increase() { // bump the number of sides of the polygon up

polygon.numberOfSides += 1
}

� Single argument selector control is ‘sender’
func adjustNumberOfSides(sender: AnyObject) { // if it is a slider

if let slider = sender as? UISlider {
polygon.numberOfSides = slider.value

}
}

� Two arguments in selector (sender & event)
func touchesBegan(touches: Set<NSObject>, withEvent event: UIEvent)
{ … }

� UIEvent contains details about the event that took
place

Action Methods

� Contols can trigger multiple actions on different
targets in response to the same event

� Different than Cocoa on the desktop where only one
target actions is supported

� Different events can be setup in Interface Builder

Multiple Target-Actions

35

Delegation

� Control passed to delegate objects to perform
application specific behavior

� How it plays out
� Create a delegation protocol (defines what the View wants the

Controller to take care of)
� Create a delegate property in the View whose type is that

delegation protocol
� Use the delegate property in the View to get/do things it can’t

own or control
� Controller declares that it implements the protocol
� Controller sets self as the delegate of the View by setting the

delegate property
� Implement the protocol in the Controller

Delegation

37

Demo

Model View Controller

ControllerControllerControllerController

calculatorcalculatorcalculatorcalculator
prepitationTextFieldprepitationTextFieldprepitationTextFieldprepitationTextField
temperatureTextFieldtemperatureTextFieldtemperatureTextFieldtemperatureTextField
aridityIndexTextFieldaridityIndexTextFieldaridityIndexTextFieldaridityIndexTextField

AridityIndexCalculatorAridityIndexCalculatorAridityIndexCalculatorAridityIndexCalculator
----calculateAridityIndexcalculateAridityIndexcalculateAridityIndexcalculateAridityIndex

ViewViewViewView

willwillwillwill diddiddiddid
shouldshouldshouldshould

Model View Controller

ControllerControllerControllerController
calculatorcalculatorcalculatorcalculator
height/weight/ageTextFieldheight/weight/ageTextFieldheight/weight/ageTextFieldheight/weight/ageTextField
genderSelectorgenderSelectorgenderSelectorgenderSelector
activityPickeractivityPickeractivityPickeractivityPicker
bmi/sw/dciTextFieldbmi/sw/dciTextFieldbmi/sw/dciTextFieldbmi/sw/dciTextField

BMICalculatorBMICalculatorBMICalculatorBMICalculator
----calculateBMIcalculateBMIcalculateBMIcalculateBMI
----calculateStandardWeightcalculateStandardWeightcalculateStandardWeightcalculateStandardWeight
----calculateDailCaloryIntakecalculateDailCaloryIntakecalculateDailCaloryIntakecalculateDailCaloryIntake

ViewViewViewView

willwillwillwill diddiddiddid
shouldshouldshouldshould

datadatadatadata
atatatat countcountcountcount

actionsactionsactionsactions
buttonbuttonbuttonbutton

40

Views

� A view (i.e., UIView subclass) represents a rectangular
area on screen

� Draws content and handles events in that rectangle
� Subclass of UIResponder (event handling class)
� Views arranged hierarchically

� Every view has only one superview – var superview: UIView?
� Every view has zero or more subviews – var subviews: [UIView]

� It’s actually [AnyObject]

� Subview order (in that array) matters: those later in the array are
on top of those earlier

� A view can clip its subviews to its own bounds or not (the
default is not to)

View Fundamentals

� Views live inside of a window
� UIWindow is actually just a view

� Adds some additional functionality specific to top level view

� Usually only one UIWindow for an iPhone application
� Contains the entire view hierarchy
� Set up by default in Xcode template project

View Hierarchy - UIWindow

� Hierarchy is most often constructed in Xcode graphically
� Even custom views are usually added to the view hierarchy using

Interface Builder

� It can be done in code using UIView methods
addSubview(aView: UIView) // sent to aView’s superview
removeFromSuperview() // sent to the view you want to remove

� Manipulate the view hierarchy manually
insertSubview: atIndex:
insertSubview: belowSubview:
insertSubview: aboveSubview:
exchangeSubviewAtIndex: withSubviewAtIndex:

View Hierarchy - Manipulation

� Where does the view hierarchy start?
� The top of the (useable) view hierarchy is the Controller’s var

view: UIView
� This simple property is a very important thing to understand!
� This view is the one whose bounds will change on rotation,

for example.
� This view is likely the one you will programmatically add

subviews to (if you ever do that).
� All of your MVC’s View’s UIViews will have this view as an

ancestor.
� It’s automatically hooked up for you when you create an MVC

in Xcode.

View Hierarchy

� A UIView’s initializer is different if it comes out of a
storyboard
init(frame: CGRect) // initializer if the UIView is created in code
init(coder: NSCoder) // if the UIView comes out of a storyboard

� If you need an initializer, implement them both
func setup() { … }
override init(frame: CGRect) { // designated initializer

super.init(frame: frame)
setup()

}
required init?(coder aDecoder: NSCoder) {// required initializer

super.init(coder: aDecoder)
setup()

}

Initializing a UIView

� Another alternative to initializers in UIView
� awakeFromNib() // this is only called if the UIView came out

of a storyboard
� This is not an initializer (it’s called immediately after initialization

is complete).
� All objects that inherit from NSObject in a storyboard are sent

this (if they implement it).
� Order is not guaranteed, so you cannot message any other

objects in the storyboard here.

Initializing a UIView

� CGFloat
� Always use this instead of Double or Float for anything to do

with a UIView’s coordinate system, let val = CGFloat(doubleVal)

� CGPoint
var point = CGPoint(x: 80, y: 54)

� CGSize
var size = CGSize(width: 144, height:72)
size.width += 42.5
size.height += 75

View-related Data Structures

� CGRect
let rect = CGRect(origin: point, size: size)

� Lots of convenient properties and functions on CGRect
var minX: CGFloat // left edge
var midY: CGFloat // midpoint vertically
intersects(CGRect) -> Bool // does this CGRect intersect this
other one?
contains(CGPoint) -> Bool // does this CGRect contain the given
point?

View-related Data Structures

UIView Coordinate System

+x+x+x+x

+y+y+y+y

(0, 0)(0, 0)(0, 0)(0, 0) 550550550550

400400400400

� Origin is upper left
� Units are points, not pixels

� Pixels are the minimum-sized unit of drawing your device is capable
of

� Points are the units in the coordinate system
� How many pixels per point are there? contentScaleFactor: CGFloat

� The boundaries of where drawing happens
� var bounds: CGRect system
� This is the rectangle containing the drawing space in its own

coordinate system

� Where is the UIView?
� var center: CGPoint // the center of a UIView (superview’s coord)
� var frame: CGRect // the rect containing a UIView (superview’s coord)

UIView Coordinate System

+x+x+x+x

+y+y+y+y

(0, 0)(0, 0)(0, 0)(0, 0) 550550550550

400400400400

View A Frame:View A Frame:View A Frame:View A Frame:
Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)
Size: 550 x 400Size: 550 x 400Size: 550 x 400Size: 550 x 400

View A Bounds:View A Bounds:View A Bounds:View A Bounds:
Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)
Size: 550 x 400Size: 550 x 400Size: 550 x 400Size: 550 x 400

View B Frame:View B Frame:View B Frame:View B Frame:
Origin: (200, 100)Origin: (200, 100)Origin: (200, 100)Origin: (200, 100)
Size: 200 x 250Size: 200 x 250Size: 200 x 250Size: 200 x 250

View B Bounds:View B Bounds:View B Bounds:View B Bounds:
Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)
Size: 200 x 250Size: 200 x 250Size: 200 x 250Size: 200 x 250

� View’s location and size expressed in two ways:
� Frame is in superview’s coordinate system
� Bounds is in local coordinate system
� Center is the center of your view in your superview’s coordinates

Center (300,225)Center (300,225)Center (300,225)Center (300,225)

� 45o Rotation

Transform

� The smallest rectangle in the superview’s coordinate
system that fully encompasses the view itself

Frame

View B Center:View B Center:View B Center:View B Center:
Origin: (300, 225)Origin: (300, 225)Origin: (300, 225)Origin: (300, 225)

View B Frame:View B Frame:View B Frame:View B Frame:
Origin: (145, 65)Origin: (145, 65)Origin: (145, 65)Origin: (145, 65)
Size: 320 x 320Size: 320 x 320Size: 320 x 320Size: 320 x 320

View B Bounds:View B Bounds:View B Bounds:View B Bounds:
Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)Origin: (0, 0)
Size: 200 x 250Size: 200 x 250Size: 200 x 250Size: 200 x 250

� If you are using a view, typically you use frame
� If you are implementing a view, typically you use bounds
� Matter of perspective

� From outside it’s usually the frame
� From inside it’s usually the bounds

� Examples
� Creating a view, positioning a view in superview – use frame
� Handling events, drawing a view – use bounds

Frame and Bounds

54

Creating Views

� Most often your views are created via your storyboard
� Xcode’s Object Paletter has a generic UIView you can drag out
� After you do that, you must use Identity Insepctor to changes its

class to your subclass

Where do views come from?

� You can create a UIView via code
let myView = UIView(frame: myFrame) // frame initializer

� Example
let labelRect = CGRect(x: 20, y:20, width: 100, height: 50)
let label = UILabel(frame: labelRect) // UILabel is a subclass of
UIView
label.text = “Number of sides: ”
view.addSubview(label)

Manual Creation

� When to create my own UIView subclass?
� I want to do some custom drawing on screen

� For custom drawing, you override
� override func drawRect(regionThatNeedsToBeDrawn: CGRect)

� Never call drawRect!! Instead, if your view needs to be
redrawn, let the system know that by calling
� setNeedsDisplay()
� setNeedsDisplayInRect(regionThatNeedsToBeRedrawn:

CGRect)

� For example (PolygonView.m)
func setNumberOfPolygonSides(sides: Int) {

numberOfSides = sides
self.setNeedsDisplay()

}

Defining Custom Views

58

Drawing Views

� UIKit offers very basic drawing functionality
� UIRectFill(CGRect rect);
� UIRectFrame(CGRect rect);

� CoreGraphics (CG): Drawing APIs
� CG is a C-based (non object-oriented) API
� CG drawing API define simple but powerful graphics primitives

� Graphics context
� Transformations
� Paths
� Colors
� Fonts
� Painting operations

CoreGraphics

� Common steps for drawRect: are
� You get a graphics context to draw into (could be printing

context, drawing context, etc). The function
UIGraphicsGetCurrentContext() gives a context you can use in
drawRect

� Create paths (out of lines, arcs, transform, etc)
� Set drawing attributes like colors, fonts, textures, linewidths,

linecaps, etc
� Stroke or fill the created paths with the given attributes

CoreGraphics Concepts

Paths

� CoreGraphics paths define shapes
� Made up of lines, arcs, curves and rectangles
� Creation and drawing of paths are two distinct operations

� Define path first, then draw it

� Two parallel sets of functions for using paths
� CGContext “convenience” throwaway functions
� CGPath functions for creating reusable paths

CGContext CGPath

CGContextMoveToPoint CGPathMoveToPoint

CGContextAddLineToPoint CGPathAddLineToPoint

CGContextAddArcToPoint CGPathAddArcToPoint

CGContextClosePath CGPathSubPath

and so on……

� Object-oriented UIBezierPath class
� Same as core graphics, but captures all the drawing with a

UIBezierPath instance
� UIBezierPath automatically draws in the “current” context

(drawRect sets this up for you)
� Methods for adding to the UIBezierPath (lineto, arcs, etc) and

setting linewidth, etc
� Methods for stroke or fill the UIBezierPath

UIBezierPath

// draw a shape and path
override func drawRect(rect: CGRect) {

let path = UIBezierPath() // create a UIBezierPath
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140,150))
path.addLineToPoint(CGPoint(10,150))
path.closePath() // close the path
UIColor.greenColor().setFill() // set attributes & stroke/fill
UIColor.redColor().setStroke() // a method in UIColor
path.lineWidth = 3.0 // a property in UIBezierPath
path.fill() // fill with green color
path.stroke() // stroke line with red color

}

Simple Path Example

� You can also draw common shapes with UIBezierPath
let roundRect = UIBezierPath(roundedSet: aCGRect,
cornerRadius: aCGFloat)
let oval = UIBezierPath(ovalInRect: a CGRect)

� Clipping your drawing to a UIBezierPath’s path
addClip() // you could clip to a rounded rect to enforce the edges
of a playing card

� Hit detection
func containsPoint(CGPoint) -> Bool // returns whether the point
is inside the path (the path must be closed. The winding rule can
be set with usesEvenOddFillRule property.)

Drawing

� Colors are set using UIColor
� There are type methods for standard colors, e.g. let greenColor

= UIColor.greenColor()
myLabel.textColor = UIColor.blueColor() // blue label text
� You can also create them from RGB, HSB, or even a pattern

(using UIImage)

� Background color of a UIView
var backgroundColor: UIColor

� Colors can have alpha (transparency)
let transparentWhite =
UIColor.whiteColor().colorWithAlphaComponent(0.5) // alpha is
between 0.0 (fully transparent) and 1.0 (fully opaque)
view.backgroundColor = transparentWhite // set background
color of view to the UIColor with alpha

UIColor

� What happens when views overlap and have transparency?
� Subviews list order determines who is in front
� Lower ones (earlier in the array) can “show through” transparent

views on top of them
� Transparency is not cheap, by the way, so use it wisely

� When you are drawing, you can draw with transparency
� By default, drawing is full opaque!

� You can hide a view completely without removing it from
view hierarchy
var hidden: Bool
� A hidden view will draw nothing on screen and get no events

either
� Not as uncommon as you might think to temporarily hide a view

View Transparency

� Fonts are set using UIFont
myLabel.font = UIFont(name: “Helvetica”, size: CGFloat(20))

� To get preferred font for a given text style using UIFont
type method
class func preferredFontForTextStyle(UIFontTextStyle) -> UIFont
� Some of the styles (see UIFontDescriptor documentation)
UIFontTextStyle.Headline
UIFontTextStyle.Body
UIFontTextStyle.Footnote

� There are also “system fonts”
class func systemFontOfSize(pointSize: CGFont) -> UIFont
class func boldSystemFontOfSize(pointSize: CGFont) -> UIFont

UIFont

68

Images & Text

� Usually we use a UILabel to put text on screen
� if we want to draw text in our drawRect
let color: UIColor = UIColor.darkGrayColor() // color
let font = UIFont(name: "Helvetica Neue", size: 18) // font
var paraStyle = NSMutableParagraphStyle() // line spacing
paraStyle.lineSpacing = 6.0
let skew = 0.1 // obliqueness
let baselineAdjust = 1.0
var attributes: NSDictionary =
[NSForegroundColorAttributeName: color,
NSFontAttributeName: font, NSParagraphStyleAttributeName:
paraStyle, NSObliquenessAttributeName: skew,
NSBaselineOffsetAttributedName: baselineAdjust]
let text: NSString = “hello”
text.drawInRect(CGRectZero, withAttributes: attributes)

Drawing Text

� There is a UILabel-equivalent for images: UIImageView
� But, you might want to draw the image inside your drawRect

� Creating a UIImage object
let image: UIImage? = UIImage(named: “”foo”) // optional
� You add foo.jpg to your project in the Images.xcassets file
� Images will have different resolutions for different devices (all

managed in Images.xcassets)

� You can also create one from files in the file system
let image: UIImage? = UIImage(contentsOfFile: aString)
let image: UIImage? = UIImage(data: anNSData) // raw jpg, png,
tiff, etc

� You can even create one by drawing with Core Graphics
� UIGraphicsBeginImageContext(CGSize)

Drawing Images

� Once you have a UIImage, you can blast its bits on
screen
let image: UIImage = ….
image.drawAtPoint(aCGPoint) // upper left corner
image.drawInRect(aCGRect) // scales the image to fit a CGRect
image.drawAsPatternInRect(aCGRect) // tiles the image

Drawing Images

� Lecture 5&6&8&13 Slide from Developing iOS8 Apps with

Swift (Winter 2015) @Stanford University

� https://developer.apple.com/library/prerelease/ios/referen

celibrary/GettingStarted/DevelopiOSAppsSwift/index.html

#//apple_ref/doc/uid/TP40015214-CH2-SW1

� https://developer.apple.com/library/prerelease/ios/referen

celibrary/GettingStarted/DevelopiOSAppsSwift/Lesson2.h

tml#//apple_ref/doc/uid/TP40015214-CH5-SW1

References

