
Designing iPhone Applications

448460-1
Fall 2015
11/2/2015

Kyoung Shin Park
Multimedia Engineering

Dankook University
2

Overview

� Designing iOS Applications
� Multiple Model-View-Controller (Why and How?)
� Segues
� View Controllers
� Navigation Controllers
� Tab Bar Controllers

3

Designing iOS Applications

� Focus on your user’s data
� One thing at a time
� Screenfuls of content

Organizing Content

Patterns for Organizing Content

� Navigation Bar
� Hierarchy of content
� Drill down into greater

detail

� Tab Bar
� Self-contained modes

6

Model-View-Controller
(Why and How?)

Why Model-View-Controller?

� Clear responsibilities make things easier to maintain
� Avoid having one monster class that does everything
� Separating responsibilities also leads to reusability
� By minimizing dependencies, you can take a model or

view class you’ve already written and use it elsewhere
� Think of ways to write less code

� Not aware of views or controllers
� Typically the most reusable
� Communicate generically using

� Key-value observing
� Notifications

Model

� Not aware of controllers, may be aware of relevant
model objects

� Also tends to be reusable
� Communicate with controller using

� Target-action
� Delegation

View

� Knows about model and view objects
� The brains of the operation
� Manages relationships and data flow
� Typically application-specific, so rarely resuable

Controller

11

Application Data Flow

12

List
Controller

List
Controller

Detail
Controller

A Controller for Each Screen

Connecting View Controllers

� Multiple view controllers may need to share data
� One may need to know about what another is doing

� Watch for added, removed or edited data
� Other interesting events

How Not To Share Data

� Global variables or singletons
� This includes your application delegate!

� Direct dependencies make your code less reusable
� And more difficult to debug & test

List
Controller

Detail
Controller

Application
Delegate

Don’t Do This!

Best Practices for Data Flow

� Figure our exactly what needs to be communicated
� Define input parameters for your view controller
� For communicating back up the hierarchy, use loose

coupling
� Define a generic interface for observers (like delegation)

List
Controller

Detail
Controller

Data

16

Segues

Segues

� Segue makes one MVC can cause another to appear
� Kinds of segues

� Show Segue (will push in a Navigation Controller, else Modal)
� Show Detail Segue (will show in Detail of a Split View or will

push in a Navigation Controller)
� Modal Segue (take over the entire screen while the MVC is up)
� Popover Segue (make the MVC appear in a little popover

window)

� Segues always create a new instance of an MVC
� This is important to understand
� The Detail of a Split View will get replaced with a new instance

of that MVC
� When you segue in a Navigation Controller it will not segue to

some old instance, it will be new

Segues

� How do we make these segues happen?
� Ctrl-drag in a storyboard from an instigator (like a button) to

the MVC to segue to, then select the kinds of segue you want
(Usually Show or Show Detail). Now click on the segue and
open the Attribute Inspector, and give the segue a unique
identifier here.

� Can be done in code as well

Segues

� What’s that segue identifier?
� You would need it to invoke this segue from code using this

UIViewController method
func performSegueWithIdentifier(identifier: String, sender:
AnyObject?)
� The sender can be whatever you want (you’ll see where it shows

up in a moment)
� You can ctrl-drag from the Controller itself to another

Controller if you’re segueing via code (because in that case,
you’ll be specifying the sender above)

� More important use of the identifier: preparing for a
segue
� When a segue happens, the View Controller containing the

instigator gets a chance to prepare the destination View
Controller to be segued to

The segue passed in contains important information about this segue:
1. The identifier from the storyboard
2. The controller of the MVC you are segueing to (which was just created for you)
The sender is either the instigating object from a storyboard (e.g. UIButton) or
the sender you provided if you invoked the segue manually in code

Segues

� The method that is called in the instigator’s Controller
func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {

if let identifier = segue.identifier {
switch identifier {

case “ShowGraph”:
if let vc = segue.destinationViewController as? MyController{

vc.property1 = …
vc.callMethodToSetUp(…)

}
default: break

}
}

}

Segues

� You can prevent a segue from happening too
� Just implement this in your UIViewController
func shouldPerformSegueWithIdentifier(identifier: String?, sender:
AnyObject?) -> Bool
� The identifier is the one in the storyboard
� The sender is the instigating object (e.g. the button that is

causing the segue)

22

View Controllers

� Controller manages views, data and application logic
� Applications are made of many of these controllers
� Would be nice to have a well-define starting point

� UIView for views
� Common language for talking about controllers

Problem: Managing a Screenful

� Some application flows are very common
� Navigation-based
� Tab bar-based
� Combine the two

� Don’t reinvent the wheel
� Plug individual screens together to build an application

Problem: Building Typical Applications

� Basic building block
� Manages a screenful of content
� Subclass to add your application logic

� Create “your” own UIViewController subclass for each
screenful

� Plug them together using existing composite view controllers

UIViewController

Views Data LogicViewController

import UIKit
class MyViewController: UIViewController {

// a view controller will usually manage views and data
var myArray : [MyData] = [MyData] ()
@IBOutlet weak var myLabel: UILabel!
@IBOutlet weak var myTableView: UITableView!

}

Your View Controller Subclass

� UIViewController superclass has a view property
� var view : UIView

� Loads lazily
� On demand when requested
� Can be purged on demand as well (low memory)

� Sizing and positioning the view?
� Depends on where it’s being used
� Don’t make assumptions, be flexible

The “View” in “View Controller”

� You can get the sub-MVCs via the viewController’s
property
var viewControllers: [UIViewController] { get set } // optional
// for a tab bar, they are in order, left to right, in the array
// for a split view, [0] is the master and [1] is the detail
// for a navigation controller, [0] is the root and the rest are in
order on the stack

� But how do you get ahold of the Split View Controller,
Tab Bar Controller or Navigation Controller itself
� Every UIViewController knows the Splie View, Tab Bar or

Navigation Controller it is currently in
� These are UIViewController properties
var tabBarController: UITabBarController? { get }
var splitViewController: UISplitViewController? { get }
var navigationController: UINavigationController? { get }

Accessing the sub-MVCs

29

View Controller Lifecycle

30

View Controller Lifecycle

View Controller Lifecycle

� A sequence of messages is sent to a View Controller as
it progresses through its “lifetime”

� Why does this matter?
� You very commonly override these methods to do certain work

� The Start of the lifecycle
� Creation
� MVCs are most often instantiated out of a storyboard
� There are ways to do it in code as well (rare)

� What then?
� Preparation if being segued to
� Outlet setting
� Appearing and disappearing
� Geometry changes
� Low-memory situations

View Controller Lifecycle

� After instantiation and outlet-setting, viewDidLoad() is
called
� This is an exceptionally good place to put a lot of setup code
� It’s better than an init() because your outlets are all set up by

the time this is called.

� One thing you may well want to do here is update your
UI from your Model
� Because now you know all of your outlets are set

� But be careful because the geometry of your view (its
bounds) is not set yet!
� At this point, you can’t be sure you’re on the iPhone 2-sized

screen or an iPad or..
� So do not initialize things that are geometry-dependent here.

viewDidLoad

� viewDidLoad() – called when the view controller’s
content view (the top of its view hierarchy) is created
and loaded from a storyboard. This method is intended
for initial set up.

override func viewDidLoad() {
super.viewDidLoad()
// your view has been loaded, customize it here if needed
myLabel.text = ”Test”;

}

viewWillAppear: & viewWillDisappear:

� viewWillAppear() – intended for any operations that you
want always to occur before the view becomes visible.

� viewDidAppear() – intended for any operations that you
want to occur as soon as the view becomes visible, such
as getching data or showing an animation.

override func viewWillAppear(animated: Bool) {
super.viewWillAppear(animated)
// your view is about to show on the screen
self.beginLoadingDataFromTheWeb()
self.startShowingLoadingProgress()

}

viewWillAppear: & viewWillDisappear:

� viewWillDisappear() – intended for any operations that
you want to occur before the view disappear off screen.

� viewDidDisappear() – intended for any operations that
you want to occur as soon as the view disappeared.

override func viewWillDisappear(animated: Bool) {
super.viewWillDisappear(animated)
// your view is about to leave the screen
// do some clean up now that we’ve been removed from the

screen
// but be carefule not to do anything time-consuming here
// maybe even kick off a thread to do stuff here
self.rememberScrollPosition()
self.saveDataToDisk()

}

� Geometry changed in View Controller?
� Most of the time this will be automatically handled with

Autolayout.
� But you can get involved in geometry changes directly with these

methods
func viewWillLayoutSubviews()
func viewDidLayoutSubviews()
� They are called any time a view’s frame changed and its subviews

were thus re-layed out, e.g. autorotation.
� You can reset the frames of your subviews here or set other

geometry-related properties.
� Between “will” and “did” autolayout will happen
� These methods might be called more often than you’d imagine
� So don’t do anything in here that can’t properly be done

repeatedly

Geometry changed?

� Autorotation
� Usually, the UI changes shape when the use rotates the device

between portrait/landscape
� You can control which orientations your app supports in the

Settings of your project
� Almost always, your UI just responds naturally to rotation with

autolayout.
� But if you want to participate in the rotation animation, you can

use this method
func viewWillTransitionToSize(size: CGSize,
withTransitionCoordinator: UIViewControllerTransitionCoordinator)
// The coordinator provides a method to animate alongside the
rotation animation

Geometry changed?

� didReceovedMemoryWarning
� This method gets called when the device is in low-memory

situations
� This is rarely happens, but well-designed code with big-ticket

memory uses might anticipate it.
� Anything “big” that is not currently in use and can be recreated

relatively easily should probably be released (by setting any
pointers to it to nil)

didReceivedMemoryWarning

� awakeFromNib
� This method is sent to all objects that come out of a storyboard

(including your Controller)
� Happens before outlets are set (i.e., before the MVC is loaded)
� Put code somewhere else if at all possible (e.g. viewdidLoad or

viewWillAppear)

awakeFromNib

� Summary
� Instantiated (from storyboard usually)
� awakeFromNib
� Segue preparation happens
� Outlets get set
� viewDidLoad
� These pairs will called each time your Controller view goes on/off

screen
viewWillAppear and viewDidAppear
viewWillDisappear and viewDidDisappear
� These geometry changed methods might be called at any time

after viewDidLoad
viewWillLayoutSubviews (... then autolayout happends then…)
viewDidLayoutSubviews
� If memory gets low, you might get didReceiveMemoryWarning

View Controller Lifecycle

41

Controller of Controllers

Controller of Controllers

� Special View Controllers that manage a collection of
other MVCs

� UINavigationController
� Manages a hierarchical flow of MVCs and presents them like a

“stack of cards”
� Commonly used on the iPhone

� UITabBarController
� Manages a group of independent MVCs selected using tabs on

the bottom of the screen

� UISplitViewControllers
� Side-by-side, master-detail arrangement of two MVCs

43

Navigation Controller

UINavigationController

� Pushes and pops MVCs off of a stack (of view controllers)
� Each MVC communicates these contents

via its UIViewController’s navigationItem property.

Navigation
Controller

View Controller

View Controller

View Controller

An “All Settings” MVC

UINavigationController

� Top view controller’s title
� This top area is drawn by the

UINavigationController

� Previous view controller’s title
� This “back” button has appeared

automatically.

� Top view controller’s view
� UIView

� Top view controller’s toolbar
items (iPhone OS 3.0)
� It is possible to add MVC specific

buttons via UIViewController’s
toolbarItems property (Array of
UIBarButtonItems)

A “General” MVC
46

Customizing Navigation

Customizing Navigation

� Buttons or custom controls
� Interact with the entire screen

UINavigationItem

� Describes appearance of the navigation bar
� Title string or custom title view
� Left & right bar buttons
� More properties defined in UINavigationBar.h

� Every view controller has a navigation item for
customizing
� Displayed when view controller is on top of the stack

Navigation Item Ownership

View Controller

View Controller

View Controller

View Controller

Navigation Item

Displaying a Title

� UIViewController already has a title property
� Navigation item inherits automatically

� Previous view controller’s title is displayed in back button

viewController.title = ”Detail”

Left & Right Buttons

� UIBarButtonItem
� Special object, defines appearance & behavior for items in

navigation bars and toolbars

� Display a string, image or predefined system item
� Target + action (like a regular button)

Text/System Bar Button Item

override func viewDidLoad() {
let settingImage = UIImage(named: “fooButton”)
self.navigationItem.leftBarButtonItem = UIBarButtonItem(

image: settingImage, style: UIBarButtonItemStyle.Plain,
target: self, action: “foo”)

let addImage = UIImage(named: “addButton”)
self.navigationItem.rightBarButtonItem = UIBarButtonItem(

image: addImage, style: UIBardButtonStyled.Bordered,
target: self, action: “add:”)

}

Edit/Done Button

� Very common pattern
� Every view controller has one available

� Target/action already set up

self.navigationItem.leftBarButtonItem = self.editButtonItem;

//called when the user toggles the edit/done button
func setEditing(editing: Bool, animated: Bool)
{

// update appearance of views
}

Custom Title View

� Arbitrary view in place of the title

var segmentedControl : UISegmentedControl = ……
self.navigationItem.titleView = segmentedControl

Back Button

self.title = ”Hello there”
let heyButton = UIBarButtonItem(”Hey!” …..)
self.navigationItem.backButtonItem = heyButton

56

Tab Bar Controllers

UITabBarController

� Array of view controllers

Tab Bar
Controller

View Controller

View Controller

View Controller

UITabBarController

� Selected view controller’s view
� All view controller’s titles

Tab Bar Appearance

� View controllers can define their appearance in the tab
bar

� Each view controller comes with a tab bar item for
customizing

� UITabBarItem
� Title + image or system item

Tab Bar Item

override func viewDidLoad() {
let tabItems = self.tabBar.items as [UITabBarItem]
let tabItem1 = tabItems[0] as UITabBarItem
let tabItem2 = tabItems[1] as UITabBarItem
tabItem1.title= “Playlists”
tabItem2.title = “Bookmarks”
tabItem1.image = UIImage(named: “music”)
tabItem2.image = UIImage(named: “bookmark”)

}

More View Controllers

� What happens when a tab bar controller has too many
view controllers to display at once?
� More tab bar item displayed automatically
� Use can navigate to remaining view controllers
� Customize order

More button brings
up a UI to let the user
edit which buttons
appear on bottom row

More button appears
62

Combining Approaches

Tab Bar + Navigation Controllers

� Combine UINavigationController & UITabBarController?
� Quite common
� Multiple parallel hierarchies

Tab Bar + Navigation Controllers

Tab Bar
Controller

View Controller

Navigation
Controller

Navigation
Controller

View ControllerView ControllerView Controller

View ControllerView ControllerView Controller

� UINavigationController goes “inside” the UITabBarController
� Never the other way around

� Create a tab bar controller
tabBarController = UITabBarController()

� Create each navigation controller
navController = UINavigationController()
navigationController?.pushViewController(firstViewController

animated:NO)

� Add them to the tab bar controller
tabBarController.viewControllers = [MyViewController1(),
MyViewController2()]

Nesting Navigation Controllers Setting Up TabBar+Navigation Controller

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject:
AnyObject]?) -> Bool {

let tarBarController = UITabBarController()
let vc1 = MyVC(nibName: “MyVC”, bundle: nil)
let vc2 = OtherVC(nibName: “OtherVC”, bundle: nil)
let controllers = [vc1, vc2] // set the array of view controllers
tarBarController.viewControllers = controllers
// add the tab bar controller’s view to the window
windows?.rootViewController = tabBarController
vc1.tabBarItem = UITabBarItem(title: “MyVC”, image:

UIImage(named: “my vc icon”), tag: 1)
vc2.tabBarItem = UITabBarItem(title: “OtherVC”, image:

UIImage(named: “other vc icon”), tag: 2)
return true

}

� Lecture 7(MultipleMVC Controller) &

8(ViewControllerLifeCycle) Slide from Developing iOS8

Apps with Swift (Winter 2015) @Stanford University

� http://www.codingexplorer.com/segue-swift-view-

controllers/

� https://developer.apple.com/library/prerelease/ios/referen

celibrary/GettingStarted/DevelopiOSAppsSwift/Lesson4.h

tml#//apple_ref/doc/uid/TP40015214-CH6-SW1

References

