
Collaborative Virtual
Environments

071011-1
Fall 2023
11/8/2023

Kyoung Shin Park
Computer Engineering

Dankook University

A Brief Timeline of CVEs

1980 1985 1990 2000

S
IM

N
E
T
 S

ta
rt

 (
8
3
)

S
G

I
F
li
g
h
t

(8
4
)

S
G

I
D

o
g
fi
g
h
t

(8
5
)

A
m

a
ze

 (
8
4
)

S
IM

N
E
T
 F

ir
st

 D
e
m

o
 (

8
6
)

N
P
S
 F

O
G

-M
 (

8
6
)

N
P
S
 V

E
H

 (
8
7
)

N
P
S
 M

P
S
-1

 (
8
8
)

S
IM

N
E
T
 t

o
 A

rm
y
 (

9
0
)

N
P
S
N

E
T
-1

 (
9
0
)

B
ri
ck

N
e
t

(9
4
)

D
IS

 (
9
3
)

D
IV

E
 (

9
2
)

N
P
S
-S

te
a
lt
h
 (
9
3
)

N
P
S
N

E
T
-I

V
 (

9
5
)

D
o
o
m

 (
9
3
)

P
a
ra

d
is

e
 (

9
3
)

C
A
V
E
R
N

S
o
ft

(9
7
)

D
ia

m
o
n
d
P
a
rk

(9
5
)

C
y
b
e
rs

p
a
ce

,
in

 N
e
u
ro

m
a
n
ce

r
(8

4
)

A
v
a
ta

r
&

 M
e
ta

v
e
rs

e
,
in

 S
n
o
w

 C
ra

sh
 (

9
2
)

M
u
lt
i-
U

se
r

D
u
n
g
e
o
n
(M

U
D

1
)

(7
8
)

M
U

G
 넥

슨
바
람
의

나
라

(9
6
)

U
lt
im

a
O

n
li
n
e
 (

9
7
)

1995

S
e
co

n
d
 L

if
e
 (

0
3
)

W
o
rl
d
 o

f
W

a
rc

ra
ft

(W
O

W
)

(0
3
)

Fa
ce

b
o
o
k
 i
n
te

re
st

 i
n
 s

o
ci

a
l
V
R
 (

1
4
)

V
ir
tu

a
l
R
e
a
li
ty

 M
o
d
e
li
n
g
 L

a
n
g
u
a
g
e
 (

V
R
M

L
)

(9
5
)

What is Collaborative Virtual Environment?

 A software system in which multiple users interact with
each other in real-time, even though those users may
be physically located in distant places.

 Typically, each user accesses his/her own computer
workstation or console, using it to provide a user
interface to the content of a virtual environment.

 These environments usually aim to provide users with
a sense of realism by incorporating realistic 3D
graphics, spatial sound & other modalities to create an
immersive experience.

Characteristics of CVE

 Shared sense of space

 Shared sense of presence

 Shared sense of time

 A way to communicate

 A way to share

CVE Examples

 MUDs & MOOs starting in late 1970s

 Networked Games
 DOOM, SGI Flight & Dogfight

 VRML-based Online Community
 Active World, Blaxxun, Sony’s Community Place, Open

Community, Vnet , Second Life (late 1990s and early 2000s)

 MMORPG (Massively Multiplayer Online Role Playing
Games) from early 2000s to the present

 Networked/Collaborative Virtual Environments
 SIMNET/Distributed Interactive Simulation (DIS)/NPSNET 1995

 DIVE

 BrickNet

 MR Toolkit

 Diamond Park

 CAVERNsoft

MUDs & MOOs

 MOO (MUD, Object-Oriented) & MUD
(Multi-User Domain)

 Text-based virtual reality environment
 Originally designed as a form of the

Dungeons and Dragons game
 Developed for multi-users on the

Internet
 Allows users to interact both with their

environment and with other users
 Descriptions of real and imagined areas

such as forests, dungeons, offices,
universities, cities, rooms, or any other
spatially oriented environment

 Communication commands are
modeled on real life, with “say”, “tell”,
“whisper” and “shout”

Doom

 Dec 1993, id Software released its
shareware game, Doom.

 Startup into the business of providing
online gaming networks.

 The posting of Doom caught most
network administrators’ eyes when their
LANs started bogging down. Doom
flooded LANs with packets at frame rate.

 This networked ability to blast people in
a believable 3D environment created
enormous demand for further 3D
networked games.

 An estimated 15 million shareware copies
of Doom have been downloaded around
the world, passed from player to player
by floppy disk or online networks.

VRML-based Collaborative Virtual
Environments

 Internet-based collaborative
virtual environments will
impact the greatest number of
people.

 Examples are Active World,
Blaxxun, Sony’s Community
Place, Open Community, Vnet

 Also, online gaming systems

 Problems of latency, rendering,
inconsistency, lack of
interaction

http://computer.org/computer/
http://computer.org/computer/

Second Life

 Second Life is an online 3D
virtual world community,
developed by Linden Lab
and modelled after the
Metaverse of Snow Crash.

‘Dokdo is Korea Territory!’ in Second Life
www.serakorea.com

MMORPG

 Massively multiplayer online
role-playing game (MMORPG)
is a genre of computer role-
playing games, in which a
large number of players
interact with one another in a
virtual world.

 Richard Garriott, the creator
of Ultima Online, coined the
term MMORPG.

 Popular examples are
Neverwinter Nights, Ultima
Online, EverQuest, Blizzard’s
World of Warcraft (WOW).

Ultima Online

SIMNET (Simulator Networking)

 SIMNET (simulator
networking) is a
distributed military
virtual environment.

 The goal was to
develop a “low-cost”
networked virtual
environment for
training small units to
fight as a team.

 SIMNET project created
an 11-site testbed with
from 50 to 100
simulators at each site.

Computer
Image

Generation
Software

Other-Vehicle
State Table

Network
Interface
Software

Sound
Generation
Software

Own-Vehicle
Dynamics

Control and
Interface
Software

Local area network

SIMNET Architecture

SIMNET Architecture

 The SIMNET network software architecture has three basic
components
 An object-event architecture

 A notion of autonomous simulation nodes

 An embedded set of predictive modeling algorithms called “dead
reckoning”

 Object-event architecture
 The world as a collection of objects whose interactions with each

other are just a collection of events.

 Objects are the vehicles and weapons systems that can interact
across the network.

 Events are messages indicating a change in world or object state.

SIMNET Architecture

 Autonomous simulation nodes
 Individual players (vehicles and weapons) on the network are

responsible for placing messages, or packets, onto the network to
accurately represent their current state.

 Packet recipients are responsible for receiving such state change
information and making the appropriate changes to their local
model of the world.

 Heartbeats: usually every 5 seconds, to keep other players
informed that a particular object is alive in the system.

 Dead reckoning
 Objects only place packets onto the network when their home

node determines that the other nodes on the network are no
longer able to predict their state within a certain threshold amount.

SIMNET Scalability

 The SIMNET network software architecture proved scalable
with an exercise in March of 1990 having some 850
objects (1 packet per sec) at five sites, with most of those
objects being semi-automated forces.

 Objects in that test averaged one packet per second, with
each packet being some 156 bytes in size for a peak
requirement of 1.06 Mbits/second, just under the T-1
speed(1.544 Mbps) of the connecting links.

Distributed Interactive Simulation (DIS)

 Fully distributed heterogeneous
network software architecture

 The environment can include
virtual players (driven by a live
human at a computer console
of some sort), constructive
players (computer-driven
players), and live players (actual
weapons systems plugged into
the DIS network).

 The US Army's Close Combat
Tactical Trainer (CCTT) is one of
the larger scale networked
virtual environments.

Distributed Interactive Simulation (DIS)

 DIS is a direct descendent from SIMNET but has packets
that are more general than SIMNET’s.

 DIS has three basic components
 Object-event architecture
 Notion of fully distributed simulation nodes
 Embedded set of predictive modeling algorithms for “dead

reckoning”

 The core of the DIS network software architecture is the
data sharing via Protocol Data Unit (PDU).

 The DIS (IEEE 1278) standard defines 27 different PDUs,
only four of which (Entity State, Fire, Detonation, and
Collision) are used by nodes to interact with the virtual
environment.
 A demonstration at the 1993 showed that Entity State PDUs

comprised 96% of the total DIS traffic.
 Remaining 4% distributed mainly amongst Transmitter (50%),

Emission (39%), Fire (4%), and Detonation (4%).

NPSNET

 To implement a large-scale networked virtual environment

 NPSNET-1,2&3
 NPSNET-1 was demonstrated live at the SIGGRAPH 91

 NPSNET-1 did not use dead-reckoning. NPSNET-1 flooded the
network with packets at frame rate.

 NPSNET-2 and 3 were utilized to explore better, faster ways to do
graphics, and to extend the size of the terrain databases possible.

 NPSNET IV
 NPSNET-IV was DIS-compliant, dead-reckoned and had spatial

sound.

 NPSNET-IV has interoperated with almost every DIS-compliant
virtual environment ever constructed.

 NPSNET-IV Capabilities
 Building walkthroughs, Articulated humans, Networking - play

across the multicast backbone of Internet.

NPSNET-IV

NPSNET-IV

DIVE

 The Swedish Institute of
Computer Science’s
Distributed Interactive Virtual
Environment (DIVE) is another
early and ongoing academic
collaborative virtual
environment.

 DIVE has a homogeneous
distributed database like
SIMNET and DIS-compliant
systems.

 Unlike SIMNET, the entire
database is dynamic and uses
reliable multicast protocols
to actively replicate new
objects.

DIVE

 A disadvantage with this
approach is that it is difficult
to scale-up because of the
communications costs
associated with maintaining
reliability and consistent
data.

 For example, modeling
terrain interactions, such as
building a bern, still would
be very expensive (though
highly desirable) in terms of
the number of polygons that
would need to be created,
changed, and communicated
in DIVE.

BrickNet

 BrickNet is developed by the
Institute of Systems Science at
the National University of
Singapore.

 A client-server model in which
the database is partitioned
among clients.

 Communication is mediated by
central servers.

 For example, as an entity
moves through the VE, its
database is updated by an
object-request broker on a
server that has knowledge of
which client maintains that part
of the world.

S1

S2 S3

Clients of S1

Clients of S3Clients of S2

Server
Communication

Diamond Park

 Mitsubishi Diamond Park has
multiple users that interact in
the park by riding around on
bicycles and talking to each
other (Social VR)

 The MERL Diamond Park VE is
built using SPLINE (Scalable
PLatform for INteractive
Environments) which provides
the implementation of locales
& beacons.

https://www.youtube.com/watch_pop
up?v=duzn3ULqS-A

https://www.youtube.com/watch_popup?v=duzn3ULqS-A

Diamond Park/SPLINE

 Locales are an efficient method for managing the flow of
data between large numbers of users in a large-scale VE

 The concept of locales is based on the idea that while a VE
may be very large, most of what can be observed by a
single user at a given moment is local in nature.

 Each locale is associated with a separate communication
channel, and each locale has its own coordinate system.

 Beacons are a special class of objects that can be located
without knowing what locale they are in (to solve the “how
do I join the VE problem”).

 Beacons act as a content-addressable index from tags to
the multicast address of locales. They make it possible to
decide what locales to attend to based on what the locales
contain.

CAVERNsoft/QUANTA

 C++ toolkit for building Tele-Immersive applications
with special emphasis on networking

 Client-server topology

 Higher-level networking and database APIs and tools
for application developer modules

 Available for Windows, SGI IRIX, Linux, FreeBSD, Sun
Solaris, HP Unix, WinCE

 Graphics support for IRIS Performer

CAVERNsoft/QUANTA

Low-Level Components

 Most of these capabilities have demo programs

 TCP, UDP, multicast, HTTP

 UDP reflector and multicast bridge

 TCP reflector

 Remote procedure calling (RPC)

 Remote File I/O

 Client/Server Databases

 Parallel Socket TCP

 Reliable Blast UDP (RBUDP)

 Cross-platform Data Conversions

 Mutual exclusion and threading

 Performance Monitoring- Netlogger compatible

 Implemented across SGI, Windows9x/NT/2000, Linux,
FreeBSD

High-Level Developer Modules

 Audio streaming

 Base and Articulated avatars

 VR navigation and collision detection

 VR picking and moving

 VR network dynamic coordinate system

 VR menus

 Speech recognition with IBM ViaVoice

 Collaborative Animator

 Collaborative application shell to jumpstart
development

Challenges of CVE Design & Developments

 Network Bandwidth

 Heterogeneity

 Distributed Interaction

 Real-time System Design and Resource Management

 Failure Management

 Scalability

 Deployment and Configuration

Network Model: Centralized

 Client-server model

 One computer (server)
collects all data and sends
updates to the users
(clients)

 Simple structure, easy to
maintain database (useful
for compression & admin
tasks)

 Not scalable, the central
server is the bottleneck

server

client

client

client

client

Network Model: Distributed

 Peer-to-peer model

 Each user maintains its
own copy of the
database

 Updates are send to
other users

 Difficult to manage the
number of connections

 Not scalable, the
network is the
bottleneck

client

client

client

client

Network Model: Hybrid

 Multi-players client-server
model with multiple servers

 If we are using a
multiplayer videogame
service company

server

client

client

client

client

server

server

client

client

How to avoid bottlenecks?

 Better communication models
 Reduce number of connections and messages

 Better database models
 Distributed databases

 Better decision making
 Make it distributed but any given decision is made in only

one place

Broadcast Communication

 The message is sent to all
users (and non-users)

 Not selective

 Floods network with packets

 All packets must be brought
up through the kernel of the
operating systems of all
users

 Even if the packet is not for
that machine! Thereby,
wasting CPU time.

network

client

client

client

client

Non-
client

Non-
client

Non-
client

Multicast Communication

 The message is sent to the
multicast group (and
therefore to all group
members)

 Non-users (non-group users)
do not receive messages

 Multicast services allow
arbitrarily sized groups to
communicate on a network
via a single transmission by
the source.

 Can inter-network (route over
the network layer) with
multicast.

network

client

client

client

client

Non-
client

Non-
client

Non-
client

What is Dynamic Shared State?

 The dynamic information that multiple hosts maintain CVE

 Accurate dynamic shared state is fundamental to creating
realistic virtual environments. It is what makes a VE “multi-
user”.

 Management is one of the most difficult challenges facing
the CVE designer. The trade off is between resources and
realism.

 Network latency problem

 For a highly dynamic shared state, hosts must transmit
more frequent data updates.

 To guarantee consistent views of the shared state, hosts
must employ reliable data delivery.

Managing Shared States

Shared Repositories Dead Reckoning

Techniques

More DynamicMore Consistent

Blind Broadcast

Shared Repository

 Maintain shared state data in a centralized location.

 Protect shared states via lock manager to ensure ordered
writes.

 Shared File Directory
 Absolute Consistency!

 Only one host can write data to the same file at a time. Must have
locks. Hence, does not support many users.

 Server Memory
 Faster than Shared file because each host uses does not have to open

and close each file remotely.

 Don’t have to have locks. Server arbitrates. Server crash is catastrophic.

 Maintaining constant connection may strain server resources.

 Virtual Repository
 Tries to reduce bottleneck at server. Better fault tolerance.

 Owner of each state transmits the current value
asynchronously and unreliably at regular intervals.

 Clients cache the most recent update for each piece of the
shared state.

 Hopefully, frequent state update compensate for lost
packets.

 Broadcast is sent “blind” to everyone.

 No acknowledgements, No assurances of delivery, No
ordering of updates.

 Used where it may not have demanding consistency
requirements.

 Each host takes explicit ownership of one piece of the
shared state (usually the user’s avatar).

 Commonly used in online game (Doom, Diablo)

Frequent State Regeneration/Blind
Broadcasts

Dead-reckoning

 The objects and ghosts
paradigm

 An algorithms to reduce
number of messages

 Instead of sending frequent
updates on object’s
position, it is calculated
locally using a last-known
velocity and position

 No need for central server

 Sacrifices accuracy of
shared state for more
participants

Dead Reckoned Path

Actual Entity Path

Update message
received

Dead-reckoning

 Implementation:
 Every user has a copy of the database

 Each user is in charge of moving all of the objects within its
database
 Direct control (“live” object)

 Dead-reckoning (“ghost” object)

 Dead-reckoning is used on “live” objects when difference from
direct control is significant, updates are sent.

 Characteristics:
 Reduces bandwidth

 Live and ghost objects have different update rates, prediction and
convergence needed (I.e. no guarantee that all users have identical
state about each object)

 Requires customization based on object behavior

Dead Reckoning

 Advantages
 Reduces bandwidth requirements because updates are sent less

frequently.

 Potentially larger number of players.

 Each host does independent calculations

 Disadvantages:
 Not all hosts share the identical state about each entity.

 Protocols are more complex to implement to develop, maintain
and evaluate.

 Must customize for object behavior to achieve best results.

 Must have convergence to cover prediction errors.

 Collision detection difficult to implement.

 Poor convergence methods lead to jerky movements and distract
from immersion.

Heartbeats

 Each user periodically sends a message called a
heartbeat informing everyone of its status.

 Usually every 5 seconds, to keep other players informed
that a particular object is alive and still in the system (and
hence should be displayed).

 Entities must have a “heartbeat” otherwise cannot
distinguish between live entities and ones that have left
the system.

 Helps recovery from lost messages (to help network
reliability)

 Helps users who just joined

Real-time Rendering Challenges

 Real-time rendering
 Polygon culling & Level-of-Detail processing

 Real-time collision detection and response
 Who determines collision in a networked virtual environment?

 Computational resource management

 Interaction management

Polygon Culling and LOD Processing

 Try to use available CPU cycles to throw away most of
our 3D model before we send it through the graphics
pipeline.

 But we are about to get graphics engines that run
over 100M polygons per second, some planning
beyond 300M+ polygons per second, so maybe this
becomes less of a problem.

 Use a hierarchical data structure for the displayable
world.

 Create LOD models by hand in our modeling tool,
throwing away small polygons for the low resolution
versions of our models.

 Some modeling tools will do LOD semi-automatically.
They give you a cut at it and you can add polygons
back in.

 Movement through our CVEs requires that we have
some way to determine if we have collided with the
surfaces in our world so that we can stop our
movement or react to the collision.

 Interactivity in our CVEs requires that we have some
way of reaching out and touching an object in our VE,
being able to determine what we touched and then
being able to react.

 No matter how good the graphics and textures look,
the poor realism resulting from a lack of collision
detection breaks the suspension of disbelief.

 Systems targeted toward large-scale, interactive
simulation environments include I-COLLIDE, RAPID,
and V-COLLIDE.

Real-time Collision Detection and Response

Computational Resource Management

 Network bandwidth increases as the number of new
users increases.
 New users increase amount of shared data and level of

interaction in the environment.
 More network bandwidth is required to maintain the data and

disseminate the interactions.

 As more users enter the CVE, additional processor cycles
are required at each of the existing users’ hosts.
 Since each user introduces new shared state to the CVE, the

processor must cache this additional state, receive updates to this
new state, and apply those updates to the cache.

 Because each user introduces additional updates, the processor
must be prepared to receive and handle the increased volume of
updates and support increased interactions with the local user.

Computational Resource Management

 Communication protocol optimization
 Reduce packet size and the number of packets

 Packet compression – may be lossless or lossy and can be
internal or external.

 Aggregation – reducing the number of packets that are
actually transmitted by merging information from multiple
packets into a single packet.

 Data flow restriction
 Controlling the visibility of data

 Data flow management using Area-Of-Interest Management

 Leveraging limited user perception

 Modifying system architecture

Data Visibility

 Resource management for scalability and performance

 The goal is to send information to those hosts who
really need to receive it

 Individual user needs to know only a small portion of
the total available information

 Aura-Nimbus approach

 Area-Of-Interest filter

Aura-Nimbus Spatial Model of
Interaction

 Aura – data should only be
available to those entities
that are capable of
perceiving that information

 Nimbus – data should only
be available to those who
are interested in that
information

 Aura-Nimbus has the
disadvantage in that it does
not scale to large numbers
of entities.

 Each packet has a custom
set of destination entities –
hard to utilize multicasting

A is fully aware of B

A is not aware of B

A is semi-aware of B

Area of Interest Management (AOIM)

 In the real world, which virtual
environments emulate, entities
have a limited “areas of
interest”.

 Area of Interest filters are
explicit data filters provided by
each host, allowing the CVE to
perform fine-grained data
management to deliver only
the information the host needs.

 Or, multicasting network to
restrict data flow

 Spatial, temporal, functional
partitioning classes

Area of Interest Management (AOIM)

 Interactions are mediated by
an AOIM software layer.

 Partition the simulation into
workable chunks to reduce
computational load on hosts
and minimize
communications on tail links.

 Distribute partitioning
algorithms among hosts.

Collaboration Challenges

 “Natural, spatial” human-human communication

 Peripheral awareness

 Unification of communication and information

 Large number of participants

 Cooperative interaction

Avatar

 Tracking head and hand
position and orientation
give good cues

 Pointing rays can be
useful in large spaces

 Articulated avatars

 Pointers with static
photographs attached

 Video as a window

 Video avatar

Avatar

 CALVIN - simple articulated
avatars were used in this
design environment that
encouraged people to work at
different scales to set up a
configurable room.

 NICE - more articulated
avatars in an educational
setting, and usage by more
casual users (issues of being
able to see yourself, issues of
'equality', emergent social
patterns)

Avatar

 TIDE - pointers with static
photographs attached. One issue
with pointers (and avatars) is
knowing who is who. Attaching a
name to a pointer is one solution
where you can quickly talk to the
person with the appropriate
pointer.

 Virtual Temporal Bone - full body
avatars would get in the way of
this educational environment so
only different colored pointers
are used showing where the
user's tracked wand is in the
space.

Avatar

 Facebook Avatar – a cartoon avatar similar to Snapchat’s
Bitmoji

 https://www.youtube.com/watch?v=PgyNPKiFbiE

Avatar

 Today you can also get yourself scanned in a 3D scanner
and generate an articulated avatar of yourself

 https://www.youtube.com/watch_popup?v=DYllOiFmwdc

https://www.youtube.com/watch_popup?v=DYllOiFmwdc

Asynchronous Work - VR Annotator

 Sometimes asynchronous
collaboration is better.

 VR annotations are
recordings in VR where both
the person’s hand and head
gestures as well as their
voice is captured.

 Similar to attaching post-it
notes to Adobe Acrobat files.

 VR annotations could be
used to create virtual tour
guides since the annotations
are animated.

Some current consumer collaborative
applications

 Cooperative games
 Black Hat Cooperative

 Keep Talking and Nobody Explodes

 Bridge Crew

 Rec Room

 Social VR
 AltSpaceVR

https://www.youtube.com/watch_popup?v=0I6QNXR0dPY

 Facebook Spaces
https://www.youtube.com/watch_popup?v=_kGRpSd4vnc

Reference

 Singhal, S. & Zyda, M., Networked Virtual
Environments: Design and Implementation, Addison-
Wesley, 1999

 Gossweiler, R. et al., An Introductory Tutorial for
Developing Multiuser Virtual Environments, Presence
3(4), 1994, pp. 255-264.

 Carlsson C. & Hagsand, O. DIVE - A platform for multi-
user virtual environments, Computers & Graphics,
17(6), 663-669, 1993.

 Leigh, J., Johnson, A., Brown, M., Sandin, D., DeFanti, T.,
Visualization in Teleimmersive Environments. In IEEE
Computer, December, 1999, pp. 66-73

http://computer.org/computer/

