VR Application & Developments

029511-1 2008년 가을학기 10/27/2008 박경신

Applications

- Vehicle Design
- Architectural Walkthroughs
- Education and Training
- □ Therapy and Rehabilitation
- Scientific Visualization
- Cultural Heritage
- Art and Entertainment

Vehicle Design & Manufacturing

- □ Visual Eyes developed by General Motors Research, Hughes Research Lab & EVL
- Rapid prototypes for reviewing computer generated 3D CAD models

Vehicle Design & Manufacturing

- □ The Virtual Backhoe project by NCSA & Caterpillar Inc.
- VR manufacturing system that allows engineers to quickly prototype wheel loader and backhoe loader design
- Engineers can operate the equipment and evaluate visual obstructions in a natural manner without having to build a physical prototype.

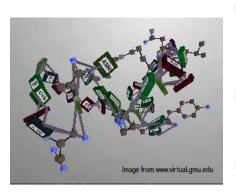
Architectural Walkthroughs

- Architectural Linked Immersive Environment (ALIVE) by SARA, The Netherlands & EVL
- □ Dutch architect Rem Koolhaas' design of the new Campus Center at the Illinois Institute of Technology in Chicago
- ALIVE lets viewers navigate through 3D CAD models

Architectural Walkthroughs

- □ CALVIN (Collaborative Architectural Layout Via Immersive Navigation)
- □ Persistent networked virtual environment
- Multi-perspective (Mortals and Deities) collaborative design

Architectural Walkthroughs



http://www.freeform.kr/

- Using Web3D
- VRML cyber exhibition floor, model house, simulation, interior, etc.

Education

- Science Space for high school or college students, using HMD by George Mason University & University of Houston
- Newton World allows students to experience Newton's three laws where they control the environment
- Maxell World examines Gauss's Law by examining the nature of electrostatic forces and fields
- Pauling World studies chemical structure of molecules

Education

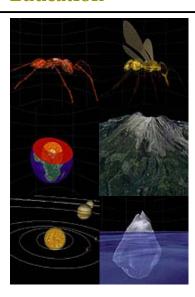
- For middle school students, by GVU, Geogia Tech
- The Virtual Gorilla Exhibit project which is based on actual data from the Zoo Atlanta gorilla exhibit (gorilla behavior data & terrain data)
- Children can "be a gorilla" and experience first-hand what it is like to join a gorilla family group

Education

- □ For elementary students, by EVL
- NICE (Narrative Immersive Constructionist Environments) Persistent garden
- Round Earth Project is intended to teach young children the concept of a spherical Earth
- Virtual Ambients is designed to help students improve early stages of students' scientific inquiry skills

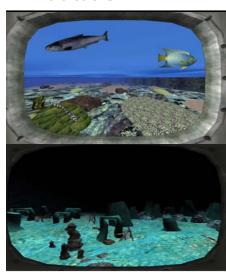
Education

- □ NICE (Narrative Immersive Constructionist Environments) Persistent garden
- Encourage learners to actively construct and interrelate knowledge and ideas
- □ Persistent garden
- □ Collaborative learning and narrative space
- □ 6-8 year old users


Education

- □ Round Earth
- □ Conceptual change: flat to spherical Earth
- Learning paradox: prior knowledge
- Displacement theory
- □ First-person experience + bridging
- □ Tele-immersive application

Education


- QuickWorlds
- □ Teacher-initiated
- □ Rapid turnaround
- □ Minimal teacher time investment
- Extend traditional practice
- □ Gradual transfer of control

Education

- □ Virtual Ambients The Field
- □ Populated with plants and moving objects such as turtles
- □ Similarity and difference lesson for the 2nd grade
- □ Interpolation and extrapolation for the 4th grade
- □ Co-occurrence rules; Beehive, salinity, moisture, and plants; Herbicides and plants for the 6th grade

Education

- □ Virtual Ambients The Bid Gulp
- Populated with fishes, corals, rocks, vents
- □ 12000 feet deep ocean
- Study of graphing environmental factors
- Study of learning in observation skills by gender

Medical Training

- Virtual Temporal Bone, developed by UIC's VR Medicine Lab lets physician teach medical students about 3D structure and function of the inner ear
- □ External view of the human ear
- Human temporal bone to reveal the delicate anatomic structures imbedded within bone
- □ Close-up view of the structure within the bone

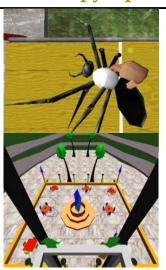
Medical Training

□ Virtual Reality Dental Training System (VRDTS), developed by School of Dental Medicine at Harvard University, to train medical students

Medical Training

- Ewha Women's University, Computer Graphics and Virtual Reality Research Center
- Medical image visualization
 VR table, front-wall projection display, CAVElike VR system

Military Training

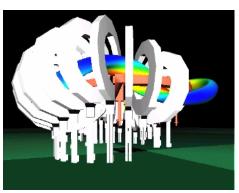

- NPSNET Large Scale Virtual Environment Technology Testbed
- NPSNet is a real-time, interactive distribution simulation system, developed by Naval Postgraduate School
- To implement a large-scale networked virtual environment
- IEEE 1278 Distributed Interactive Simulation (DIS) application protocol

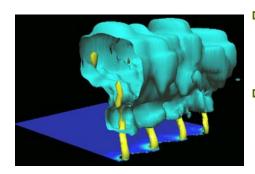
VR Rehabilitation

- □ 'Rutgers Ankle' Rehabilitation Interface, developed by Rutgers University
- □ Pilot the virtual plane
- The "Rutgers Ankle"
 Rehabilitation Interface is a robotic ankle rehabilitation device designed for at-home use and Internet-based remote monitoring by therapists

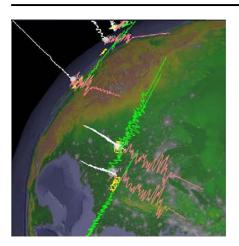
VR Therapy - phobia treatment

- □ Spider phobia, developed by HIT lab at University of Washington VR exposure therapy for treating spider phobia
- □ Acrophobia (the fear of heights), developed by GVU at Georgia Tech VR exposure therapy that involves exposing the subject to anxiety producing stimuli while allowing the anxiety to attenuate


VR Therapy


- Seoul Baik Hospital, VR therapy clinic
- Severance Hospital

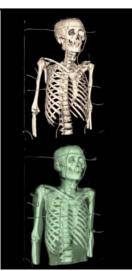
Scientific Visualization


- Heliac Plasma Coil, developed by Cooperative Research Center for Advanced Computational Systems at Australian National University
- Main magnetic coil set and a magnetic "flux surface" of the H-1HF Heliac fusion plasma physics experiment

Scientific Visualization

- Non-Supercell Tornado Simulation developed by UIUC Dept. of Atmospheric Sciences & NCSA
- Viewers can immerse themselves with the digital storm and understand how they form and develop

Scientific Visualization


- Wiggleview, developed by EVL
- □ Traditionally seismologists look at 2D X-Y plots of a timeseries of the displacement of a seismometer in the North-South, East-West, and Up-Down directions
- Wiggleview allows to visualize the simultaneous recording of three channels of seismic data in response to an event

Scientific Visualization

- Development of Typhoon Maemi landed on the southern coastal area of Korea during Sep 2003, developed by Digital Ocean & Virtual Environment Center at Korea Ocean Research and Development Institute
- Low-saline water in Yellow Sea due to spreading of Changjiang Diluted water toward Jeju Island, developed by DOVE at KORDI
- Scientific visualization to display multi-dimensional numerical data (e.g. atmospheric, oceanographic),

Scientific Visualization

- □ Visible Korean Human, developed by Computer Graphics Lab at Sogang U. & KISTI
- Volume visualization using image-based rending technique
- □ CT, MRI, RGB datasets of a Korean senior, created by KISTI and Ajou Univ.
- □ allows users to investigate skin and bone of the human

Cultural Heritage

- □ Virtual Harlem allows people at remotely located CAVEs to tour 1920-40 Harlem, and listen to African American artists, writers and intellectuals of that time notably Langston Hughes, Marcus Garvey and others.
- □ Collaborative effort between Central Missouri State University, Advanced Technology Center at University of Missouri, and EVL at UIC.

Cultural Heritage

■ A virtual cultural and artistic exhibit of the Mogoa Grottoes of Dunhuang. Dunhuang, one of western China's ancient cultural sites, is considered the gateway to the well-known Silk Road- the East-West trade route between Asia & Europe.

Cultural Heritage

- Hellenistic Miletus, by Foundation of Hellenic World (FHW) & EVL
- □ A cultural heritage demonstration which takes visitors on a shared virtual voyage through the ancient Greek city of Miletus as it existed 2000 years ago

Cultural Heritage

□ Temple of Zeus at Olympia, Foundation of the Hellenic

Cultural Heritage

□ Digital Koguryo, Digital reconstruction of Anak No. 3

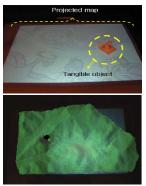
31

Cultural Heritage

□ Tangible Moyangsung, Use of tangible blocks to interact with the virtual environment

33

Cultural Heritage



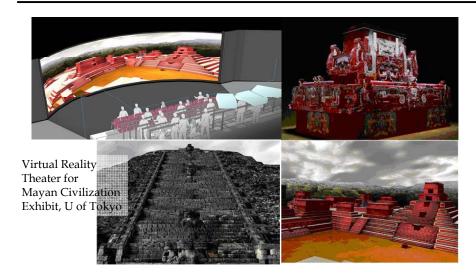
- Mont-Saint-Michel interactive virtual heritage tour guide system
- Allows users to travel in the virtual heritage site and get more information about the sites or items of user's interests.
- Also allows users to make their own tour guidebook with the pictures they have taken during the virtual tour and more detail descriptions from the tour guide database

Cultural Heritage

□ Dream of Mee-luck @GIST, VR-based immersive cultural heritage system which supports context-aware, personalized human-computer interaction

Cultural Heritage

■ Enigma of the Sphinx, Swiss Federal Institute of Technology in Lausanne (EPFL)



Cultural Heritage

Interactive Art

- □ Crayoland created by Dave Pape, EVL – 2D crayon drawings placed in a 3D world
- Synesthesia by Rita Addison & Marcus Thiebaux, EVL – a sensory input (e.g. music) is perceived as a different sensory mode
- □ CAVE Quake by Paul Rajlich, NCSA

Interactive Art

- □ CITYCLUSTER "From the Renaissance to the Gigabits Networking Age", EVL & Fabricat
- Florence representing "
 Renaissance Age" &
 Chicago representing the
 "Gigabits Age" are
 interconnected by high
 speed network, enabling
 remote participants to
 interact and collaborate in
 shared environments

Interactive Art

- □ ID Illusion
- Exploration into the artist's subconscious as a metaphorical journey: maze, topiary garden, family photograph, falling away of the floorboards, ultimately dropping into a space fills with memories, abstract world, magic mirror reflecting identity, liberate from the bird cage, hanging butterfly, tree growing out of the ground

Entertainment

Disney
Quest Aladdin

The problem of VR applications

- Are there any real world problems that
 - Benefit from VEs?
 - Requires VEs?
- Why few applications?
 - Hardware issues
 - Software issues
 - Public acceptance
 - Interaction

Hardware Issues

- □ High cost/benefit ratio
- Overall system latency
- Expensive cost to get high resolution, wide FOV, bright stereoscopic display
- □ Rendering very large models
- Realistic haptics

Software Issues

- Lack of standards
- □ Vastly different & too many toolkits
- □ Interoperability & portability
- □ Graphics file formats
- □ Difficult to build models

Interaction

- □ Interaction simple and infrequent
- Need 3D Interface for complex interaction
- Domain experts (scientists, architects, engineers, etc) want to use virtual environments, but their projects die in the research lab because the prototypes are not usable

Public acceptance

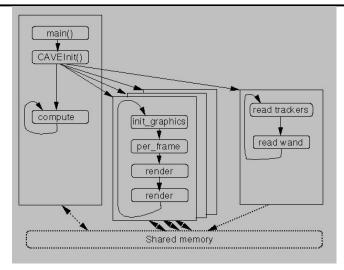
- Simulator sickness
- **□** Fatigue
- □ Isolate from real world

VR Software

- □ CAVElib (EVL/VRCO) http://www.vrco.com/
 - software toolkit for developing VR applications, such as CAVE, ImmersaDesks, HMDs
 - The major tasks are to read data from the input devices (trackers and wand or other controller), configure the graphics output, and manage the multiple, parallel processes in an application
 - support simulator mode
- □ VR Juggler (Iowa State) http://www.vrjuggler.org/
 - open source, object-oriented, virtual platform for VR application developments
- □ FreeVR (NCSA) http://ww.freevr.org/
 - open source VR toolkit
- □ Diverse (Virginia Tech) http://diverse.sourceforge.net/
 - cross-platform, open source APIs for VR application developments
- □ Vega (Multigen) http://www.multigen.com/
 - provides cross-platform scene graph APIs

VR Software

- □ Alice (CMU) http://www.alice.org/
 - programming environment for interactive virtual environments
 - provide an easy-to-user rapid prototyping environment for 3D application
 - use Python for programming object behaviors
- WorldToolKit (Sense8/ EAI) http://www.sense8.com/
 - WorldToolKit, WorldUp, World2World
 - WTK is a collection of C functions for driving VR input and output devices and manipulating the world database
 - Behaviors are programmed as VisualBasic scripts
- □ dVise (Division)
 - commercial VR development packages
 - allows one to create applications without direct programming
 - uses the script file that contains the world object hierarchy and behaviors


CAVElib Components

- □ Tracking support Flock of Birds, Spacepad, Motionstar, Polhemus, Intersense IS-600, IS-900, tracker daemon
- Control device (wand)
- Multiprocessing should be multiprocessing (separate processes for calculation, tracking, and display)
- □ Stereo perspective projection must provide off-axis perspective projection for correct stereo in the CAVE
- Configuration files
- Simulator
- Miscellaneous utilities
- □ CAVEUser's Guide at http://www.evl.uic.edu/pape/CAVE/prog/CAVEGuide.html

VR Software

- □ VSS (NCSA)
 - http://cage.ncsa.uiuc.edu/adg/VSS/
 - Networked client/server
 - Sample playback & advanced synthesis algorithms
 - Real-time manipulation
 - Localization
- bergen (Dave Pape)
 - http://www.evl.uic.edu/pape/sw/bergen/
 - Networked client/server
 - Sample playback
 - Free, Simple, C++ interface

CAVElib Components

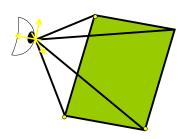
CAVElib Configuration

- Evolved for new systems
 - Tracking
 - Input
 - Graphics display
 - Physical display

CAVElib Configuration Files for ImmersaDesk

Walls screen0
WallDisplay screen0:0.0 1280x1024+0+0
ProjectionData screen0 * wall -3 3 0 -3 6 -2 3 3 0
TransmitterOffset 0 7 1.5

CAVElib Configuration Files for CAVE

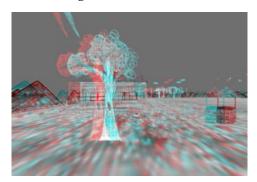

WallDisplay front :0.0 1024x768+1+1 WallDisplay left :0.0 1024x768+1024+0 WallDisplay floor :0.1 1024x768+0+0 WallDisplay right :0.1 1024x768+1024+0

DisplayMode stereo
StereoBuffer y
TrackerType birds
TransmitterOffset -0.1 7.04 1.65 feet

HeadSensorRotation 0 0 1 -90 HeadSensorOffset 3.5 0 -2.5 inches WandSensorRotation 1 0 0 -30 WandSensorOffset 0 0 -4 inches

CAVElib Configuration Files for HMD

Walls left_eye right_eye
WallDisplay left_eye :0
WallDisplay right_eye :1
ProjectionCorners left_eye -1 -1 -2 -1 1 -2 1 -1 -2 inches
ProjectionCorners right_eye -1 -1 -2 -1 1 -2 1 -1 -2 inches

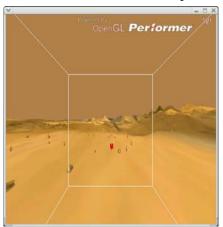


CAVElib Configuration Files for Geowall

Walls screen0 screen1
WallDisplay screen0 :0.0 1280x1024+0+0
WallDisplay screen1 :0.0 1280x1024+1280+0
WallEyes screen0 left
WallEyes screen1 right
ProjectionData screen0 * wall -5 0 -5 -5 10 -5 5 0 -5
ProjectionData screen1 * wall -5 0 -5 -5 10 -5 5 0 -5

CAVElib Configuration Files for Anaglyph

Walls screen0 ColorMask screen0 left R ColorMask screen0 right GB



CAVE Tracker Daemon

- Separates tracking & controller details from CAVE library
- Allows addition of new devices not directly supported by CAVElib
- □ Can be used with non-CAVElib applications
- □ Data is stored in SysV-style shared memory segments
- □ Structures are meant to be forward-compatible for future changes

CAVE Simulator

■ Provides simulated alternatives to CAVE components

Creating Objects for the Virtual World

- Four classes of Virtual World substance
 - Geography (world terrain)
 - Agents
 - Artifacts (normal objects)
 - User interface objects
- Static vs. Dynamic Objects
 - Static objects created "pre-participation"
 - Static objects are created by the use of modeling package such as Maya, SoftImage, 3D Studio Max, AC3D
 - Dynamic objects "rendered" in code pre-participation or rendered by code during participation
- □ Static vs. Dynamic Behavior
 - Static behaviors are fixed, articulated, parameterized
 - Dynamic behaviors are simulated by code during participation

Configuration

- □ What needs to be configured?
 - What input devices to use & where to fine them
 - How many displays, and where to find them
 - How to render multiple channels (stereoscopic)
 - Simulated VR hardware
- When is the configuration specified?
 - Fixed in code for local hardware
 - Run-time configuration
 - Dynamic (during run-time) configuration
- How much can be (re)specified during the participation?
 - Stereoscopic view on/off
 - Changes screens
 - Change input devices

VR Application Development Tasks

- Determine Configuration
- □ Interface with Input Devices
- □ Initiate and Handle Multiprocessing
- □ Calculate World Physics Simulation
- □ Calculate Perspective Rendering
- □ Calculate Primitive Elements
- Render Primitives
- □ Create Object Models

Input Device Interface

- □ Interface with the hardware
- □ Interpreting the Input
 - Mapping Physical inputs to Logical inputs
 - Continuous (e.g. tracking) vs. Discrete (e.g. buttons)
 - Sampled vs. Queued
 - Reading discrete inputs as continuous
 - Reading Continuous inputs as discrete
 - Preprocessing (filtering) input
- Some VR software for input only
 - Virtual Reality Peripheral Network (VRPN)
 - AR Toolkit

Multi-Processing

- Course-grain parallel processing
 - Reading inputs
 - Simulating world
 - Rendering outputs
 - Networking
- □ Free running vs. lock-step
- □ Distributed vs. SMP
- Additional effort
 - Synchronizing
 - Sharing information
 - Distributing information across cluster

Networking

- □ Sharing a world between VR systems
- How much is shared?
 - Avatar
 - Voice
 - State of the world
- How is it implemented?
 - Client/server
 - Peer to peer

World Physics Simulation

- □ Programming the virtual world's "laws of nature"
 - Gravity
 - Object manipulation
 - Particle systems
 - Intelligent agents
 - Collision detection
 - World persistence
 - Transferring information to other shared virtual worlds

Rendering Parameters

- Rendering to the senses must respond based on the position of the user in VR
 - Perspective viewing, listening, touching
 - Need to determine the location of each eye
 - Off-axis visual perspective rendering
 - Need to determine the location of each ear
 - Convolution or other processing of sounds
 - Need to determine the location of each finger or other body part
 - Feature of most VR integration libraries

High-Level Rendering

- Organized Primitive Elements
 - Organizes the primitives into higher-level concepts to make programming easier
 - A visual "scene graph" uses a directed graph to represent the relationship of visual elements of the rendering
 - Two ways to inherit properties in scene graph: siblings and parents
 - Often allow complex objects to be loaded from a 3D file format, e.g. Inventor/VRML, 3D Studio, Quake format
- □ Performer, an example high-level visual library:
 - Designed for highly efficient rendering
 - Many file format loaders available
 - Uses parent inheritance
 - Linked many VR integration libraries
 - Uses OpenGL for low-level rendering

Low-Level Graphics Rendering

- Renders the basic primitives
 - Surfaces: Polygons, NURBs surfaces, Constructive Solid Geometry (CSG)
 - Lighting: Solid colors, Sharing, Physics of light
 - Effects: Fog, Texture maps
- □ For real-time, generally use Polygons & Phong sharing
- □ OpenGL is (historically) low-level visual rendering library of choice for VR

Haptic Rendering

- □ GHOST is a high-level haptic rendering library
 - It provides a scene graph
 - Has functions such as "vibrate" when contact is made with a node
- ArmLib does more low-level haptic rendering
 - It provides modes such as spring & dashpot, point & plane
 - Applications or high-level haptic library makes use of these primitive models to render the world appropriately

Stereoscopic Rendering

- Multiplex two visual images over:
 - Time (shutter glasses)
 - Space (a screen for each eye)
 - Polarity (polarized glasses)
 - Color Spectrum (red/blue anaglyphic, TAN infinitec)
- □ Time is easy and good quality given sufficient hardware
 - Extra interlace divides top and bottom in time
 - Quad-buffer stereo requires more frame buffer memory
- □ Space requires specialized hardware
- □ Polarity requires special filters (easy) and two perfectly aligned projectors (hard)
- □ Anaglyphic is cheapest, easy to implement, but hard on the eyes

Real-Time Rendering

- Real-time rendering rates:
 - Minimally 12 Hz
 - Preferably 30 Hz
- Rendering techniques to decrease render time and enhance realism
 - Culling: Frustum, Backface, Level-Of-Detail (LOD)
 - Texture maps: Image on a polygon
 - Tracks to hide cardboard cutout look:
 - □ Rotate to viewer
 - Multi-view textures
 - □ Stereoscopic texture
 - Animated textures

Reference

- Lots of VR toolkit tutorial sessions at Advanced CAVERNUS Workshop Series http://calder.ncsa.uiuc.edu/CAVERNUS_Workshop/workshop.html
- □ http://www.evl.uic.edu/pape/CAVE/ConfigTricks.ht ml
- □ http://www.evl.uic.edu/pape/CAVE/prog/CAVEGuide.html