Display & Rendering

029515 2010년 봄학기 3/22/2010 박경신

Human Perception System

□ Obtain information about environment through senses:

- distant Vision: primary form of perception in most VR
 - Audition: second most common in VR
 - Haptic/Touch: perceptible on through direct contact
 - Vestibular/kinesthetic sense

Olfaction chemical proprioceptive

- Gustation
- VR systems mimics the senses by output of computergenerated stimuli rather than natural stimuli to one or more of these sense.

Vision

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

Audition

Touch

Olfaction

Gustation

Displays

- □ Display device presents perceptual information
- □ Often display is used to mean 'visual display'
- Goal: display devices which accurately represent perceptions in simulated world (i.e., higher levels of immersion)

Visual Displays

- □ Fishtank VR stationary display
- Projection VR stationary display
 - Surround-screen displays
 - Tabletop displays
 - Wall displays
- Occlusive head-based display
 - Head-mounted display (HMD)
 - Binocular mono-oriented monitor (BOOM)
- Nonocclusive head-based display
- Hand-coupled display

Visual Display Presentation Qualities

- Number of display channels
 - two for stereoscopic displays
 - sometimes two display channels, but the same image on both
 - many ways to transmit multiple channels: color (anaglyph), polarization, time-multiplexing, spatial-multiplexing
 - can combine techniques to introduce more channels (perhaps for two viewers) – e.g. Fakespace DuoView

Visual Display Presentation Qualities

- Color
 - mostly trichromatic color
 - monochromatic color in some displays e.g. see-through HMD
 - field-sequential color display overlays the three colors in same location
- Contrast/Brightness
 - dynamic range of the display
 - LCD displays tend to have lower contrast than CRTs
 - See-through HMD requires brighter display
- Spatial resolution
 - number of pixels & pixel density
- Screen geometry
 - Rectangular, L-shaped, hemispherical, hybrids
 - Non-rectangular screen shapes require nonstandard projection algorithm

Visual Display Presentation Qualities

- Focal distance
 - distance at which images seem to appear
 - typically the screen in stationary displays
 - can be infinite via optics in an head-based display
- Opacity
 - occlude the real world or not
 - CAVE does not occlude the real world
 - most HMDs occlude the real world
 - see-through HMD is generally used for AR applications
- Masking
 - hiding things behind an object
 - a problem when a virtual object comes between the viewer's eyes and a physical object
 - physical objects (e.g. user hand) mask virtual objects in stationary displays

Visual Display Presentation Qualities

- □ Field of view
 - measure of the angular width of user's vision
 - typical HMDs cover about 100 degree FOV with about 60 degree stereo overlap FOV
- □ Field of regard
 - amount surrounding space where virtual world is displayed
 - HMDs are typically 100%
 - CAVEs are often much less (except for 6-sided CAVEs)
- Head position information
 - typically position trackers monitor six degree of freedom (DOF) of the participant's head
 - 3-DOF orientation is needed for HMDs
 - 3-DOF location is needed for stationary displays

Logical Qualities of Visual Displays

- User mobility
 - can effect on mental immersiveness and usefulness of user VR experience
 - e.g. cables that tether the user, tracking systems with limited range, or screens that prevent further physical movement
- □ Interface with tracker methods
 - type of displays can influence the selection of tracking methods
- Environment requirements
 - conditions of the surrounding space necessary to provide a good VR experience
 - projection-based displays require low light
 - CAVE requires big rooms

Visual Display Presentation Qualities

- Graphics latency
 - lag between user movements and the update of the display
 - source of causing nausea or headaches
 - lag is very noticable when rotating head in HMD
 - lag is less noticable when rotating head in CAVE
- □ Temporal resolution (frame rate)
 - image updates per second (measured as FPS or Hz)
 - motion pictures capture 24 FPS
 - 15 Hz is considered marginally acceptable
 - 10 Hz and below causes brain to notice that it is seeing a series of still images
- Line transfer
 - Front projection, rear projection, laser light directly onto the retina, special optics

Logical Qualities of Visual Displays

- Associability with other sense displays
 - headphones and HMDs work well together
- Portability
 - large stationary displays are not portable
 - e.g. HMD vs. CAVE

Logical Qualities of Visual Displays

Throughput

- HMDs often requires a minute or two to change viewers
- easier for people to enter and exit a CAVE

Encumbrance

- generally more wires associated with HMDs
- Safety
 - eye fatigue and nausea can result from poor optics
 - can't see what you're doing in real world in an occlusive HMDs

Cost

- generally head-based displays tend to be lower priced than large-screen projection systems
- CAVE requires more graphics power

Monitor-based or Fishtank VR

- □ Use standard computer monitor
- Differ from generic interactive 3D graphics displayed on a monitor because render scenes based on the user's head tracking data
- □ Fewer components & lower cost
- Standard interface devices available (keyboard, mouse)
- □ Limited FOV & FOR
- Generally less mentally immersive

Projection-based VR: Surround-screen displays

Larger more costly displays

Longer range tracking systems

□ Greater FOV & FOR

- Not isolated from the real world
- Multi-viewers friendly
- Not very encumbering
- Less eye strain
- More space required
- More graphics power required
- Occlusion problem
- EVL's CAVE, VRAC's C6,

Projection-based VR: Tabletop displays

- Good for direct manipulation
- Good for god's eye view
- □ Good for changing orientation
- Less immersion than surrounded VR displays
- □ Limited mobility than HMD
- Physically-based travel techniques are not suitable
- Responsive Workbench, ImmersaDesk, VersaBench, Barson, VisionMaker

Projection-based VR: Wall displays

- □ 3D movie-like VR displays
- Larger tiled or curved wall displays are suited for larger audiences larger pixel, need more projectors
- Less immersion than surrounded VR displays
- □ Problem of seamless integration
- U. Minnesota's PowerWall, Hemispherical Displays

Head-based Displays

- Small, lightweight screens
- More portable than stationary VR displays
- More encumbering than stationary VR displays
- Distortion at edges
- □ Tethering to computer
- **□** 100% FOR
- □ Limited FOV
- No peripheral vision
- □ Lag in tracking is detrimental
- Eye fatigue

Head-Mounted Displays

- e.g. Sony Glasstron
- HMD Vendors at http://www.faqs.org/faqs/virtual-worlds/visual-faq/section-2.html

See-thru Head-based Displays

- Optical see-through vs. video see-through
- □ Require 6-DOF tracking
- Registration of tracking with the real world
- Application must live within the restriction of the real world
- Proper rendering of object occlusion is difficult

Handheld VR

- Limited example of handheld VR – e.g. Chameleon, Virtual binoculars
- Used as a magic lens
- Need to track both the screen and the head
- Registration of tracking with the real world
- Can be used in conjunction with projection-based VR displays

Virtual Retinal Display

- Also called, light scanning display, by the HIT lab in 1991
- Image scanned directly onto retina
- Viewer can see an image equivalent to a 14-inch monitor viewed from 2 feet away
- □ High FOV and FOR
- Image loss caused by a lack of eye tracking if users move their eyes while using VRD
- Accommodation and convergence cue conflicts

Autostereo/3D Display

Innovision HoloAD

■ 3D Displays

- Hologram
- Volumetric
- Stereoscopic: active, passive, auto stereo, etc

Volumetric Display Dimen Autostereo Display MIT Mark-II Hologram

Autostereo/3D Display

- Volumetric and Holographic Display
 - Produce true 3D image
 - No accommodation and convergence conflict
 - No motion tracking needed for parallax motion cue
 - Hence, the number of viewers with the correct perspective is unlimited
 - But, current volumetric displays cannot provide many monocular depth cues such as occlusion and shading
 - Volumetric and holographic display can display images only within a small working volume – inappropriate for immersive VE or AR

Auditory Displays

- Second most common VE display
- □ Perception: pitch, loudness, location
- □ Technology: speaker-based, headphone-based
- Sound in the real environment:
 - Direct sound: reaches the listener first
 - Early sound: early reflections
 - Reverberant sound: the decay of early sounds

Aural Display Presentation Qualities

- Number of display channels
 - monophonic
 - stereophonic
 - quadraphonic, octaphonic, 5.1
 - multiple speakers rely on ears to naturally localize sounds
- Sound stage
 - source from which a sound appears to emanate
 - head-referenced vs. world-referenced
 - head-referenced sound stage moves with the head
 - world-referenced sound stage remains fixed with the world
 - sounds require filtering based on head tracking to reproduce a world-referenced sound stage with headphones

Aural Display Presentation Qualities

- Localization (Spatialization)
 - localization is human brain's ability to determine the location from which a sound is emanating
 - spatialization is technology's ability to make a sound appear to come from particular points in space
 - spatialization is easier with headphones due to direct sound control
- Masking
 - loud sounds mask softer sounds
 - physical objects can mask a sound
 - closed headphones are best for VR experience where the participants is only supposed to hear sounds from the virtual world
- Amplification
 - Need to boost the sounds to hearable levels

Logical Qualities of Aural Displays

- Noise Pollution
 - speakers require quiet and echo free environment
- User mobility
 - wired headphones limit mobility
- Interface with tracker
 - magnets in the speaker/headphones
- Environment requirements
- Associability with other sensors
 - typically stationary with stationary, head-based with head-based
- Portability & Encumbrance
 - speakers generally more comfortable for longer use
- Throughput
 - speakers work better for larger audiences
- Safety & Cost

3D Sound Localization

- Spatialization
- □ Works well in plane of ears
- Based on binaural cues:
 - Interaural intensity differences (IID)
 - Interaural time differences (ITD)
- Head-Related Transfer Function (HRTF)

Azimuth Cues

- □ Interaural time difference (ITD)
 - difference in the arrival time of the sound at the two ears
 - ITD is zero when the azimuth angle is 0 degree, i.e. the source is directly in front of or directly behind the head
 - ITD = $(a/c)(q + \sin \theta)$
 - a: the head radius
 - f c: the speed of sound (~343 m/s)
 - θ : source azimuth
- □ Interaural intensity differences (IID)
 - difference in the intensity of sound reaching the ears
 - the closer ear hears a sound with higher intensity
 - detectable for sounds with high frequencies (>1.5kHz)
 - for low frequency, ITD dominates

Vertical-Polar Coordinate System

θ: azimuth (angle between the nose and a plane containing the source and the vertical axis z)
φ: elevation (angle between the horizontal plane by a line passing through the source and the center of the head)
ρ: range (distance to the source measured along this line)

Elevation Cues

- Different reflections
 - Due to the asymmetry of the outer ear, especially the pinna
 - the path difference between the direct and pinna-reflected sound changes with the elevation angle
 - sound coming from a source located above the user's head has quite a different reflection path than sound coming from a source in front of the user
- □ Different amplification (and attenuation)
 - by interference between reflected sounds
 - some frequencies are amplified and others are attenuated
- □ Pinna provides the primary cue for source elevation
 - user's face and shoulders geometry also influences the way the sound is reflected towards the outer ear

Elevation Cues

Range Cues

- Perceived loudness
 - prior knowledge of a given sound source
 - faint siren (which is a normally high-energy sound source) is perceived as being distant
 - clear whisper (which is a normally faint sound source) is perceived as being close
- Motion parallax
 - change in sound source azimuth when the user is moving
 - large motion parallax indicates a source nearby
- Ratio between direct and reflected sound
 - energy of the direct sound drops off with the square of the source range
 - energy of the reflected sound does not change much with range

Head-Related Transfer Functions

- HRTF captures all of the physical cues to source localization
- Experimental measurement of transfer function
 - sounds from speakers at different locations
 - tiny microphones in the ears
 - analysis of recordings from both ears
 - head-related impulse responses (HRIRs)
 - head-related transfer functions (HRTFs)
- Each individual has his/her HRTF signature, also called ear print

3D Sound Generation

- Two techniques about generating 3D sound
 - 3D sound sampling and synthesis
 - Record sound that the listener would hear in 3D virtual environment by taking samples from real world – But, specific to the environmental settings in which the recordings were made
 - Imitate the binaural recording process by processing a monaural sound source with a pair of left and right ear HRTFs in VE – But, not produce reverberation cues and also many HRTF pairs needed for multiple sound sources
 - Auralization
 - Process of rendering the sound sources to simulate the binaural listening experience through the use of physical and mathematical models
 - Wave-based modeling: solves the wave equation to completely recreate a particular sound field
 - Ray-based modeling: ignores the wavelengths of sound waves and only considers the paths taken by the sound as they travel from source to listener

Convolvotron

- □ Crystal River Engineering
- □ HRTF-based spatial audio system
- The system can be customized for a particular individual by measuring and using that person's HRTF
- Echoes and room reverberation can be added by including a room simulation model
- Head motion can be accounted for by combining the absolute location of the source with the outputs of a head tracker to select the appropriate HRTFs

Ambisonics

- Presentation of 3D spatialized sound using multiple stationary speakers
- surrounding sound recording, synthesis and playback system

http://en.wikipedia.org/wiki/Ambisonics

Simple Virtual Environment Audio

- □ Intensity fall-off & localization
 - 3D spatial sound creates an important audio depth cue
- Headphones also block real-world noises
- Ambient sound in the background
 - Ambient sound effects provide a sense of realism in VE
- Subwoofer in seat or platform
- Present speech instead of text
 - Recorded or synthesized speech can play a role as an annotation tool, and provide help to users when interacting in VE
- Sensory substitution
 - E.g. a sound could substitute for the feel of a button press or physical interaction with a virtual object

Haptic Displays

- Kinesthetic/Force displays
- Tactile displays
- End-effector displays
- Robotically operated shape displays

Haptic Display Presentation Qualities

Kinesthetic cues

- nerve inputs that sense angles of joints, muscle length, tension, and resistance to muscle effort (force) within the body
- helps us determine firmness, approximate shape, and physical force
- Active kinesthetic vs. passive kinesthetic

■ Tactile cues

- sensory receptors at the skin
- mechanoreceptor shape and surface texture
- thermoreceptor heat
- electroreceptor electric current flow
- nociceptor pain

Grounding

- force/resistance displays require an anchor
- self-grounded vs. world-grounded

Haptic Display Presentation Qualities

■ Form

- the shape of the physical unit with which the user interacts
- generic form, such as stick, ball, or plane
- specific object, such as handgun, or steering wheel
- amorphous that changes shape to multiple specific representations

Fidelity

- how rapidly the system can change to the proper display (force, temperature)
- can be rated by a maximum stiffness measurement taken in Newtons/meter (Nt/m)
- a stiffness of 20 Nt/cm as a solid immovable wall
- 40 Nt/cm is the maximum force that a human finger can exert
- 10 Nt/cm is the highest force used when doing fine manipulation

Haptic Display Presentation Qualities

Number of display channel

- how many points of contact with the body
- 1 channel when Phantom has one point where the user can influence the virtual world

Degrees of freedom

- 6-DOF in unconstrained movement
- 1-DOF display for how far can the thumb be opened/closed
- 1-DOF display for how far down a tube can you insert a laparoscope camera
- 2-DOF display for how far down a tube, plus twist
- 3-DOF display for down, twist, clamping action and resistance
- 3-DOF display for location of the finger or stylus
- 6-DOF display for location and orientation

Haptic Display Presentation Qualities

Spatial resolution

- higher resolution required at the fingertip
- fingertips can sense difference 2mm apart
- 30 mm on the forearm & 70 mm on the back

■ Temporal resolution

- how quickly the system can be updated to new display
- low frame rate on a force display causes the object to be perceived as shakey
- 1000 Hz is a good minimum

Latency tolerance

low latency display is crucial, especially for force display

Size

larger displays allow broader range of motion

Logical Qualities of Haptic Displays

- User mobility
 - world-grounded displays require the user to be near the device
- Interface with tracker
 - responsive and accurate tracking system is required
- Environment requirements
- Associability with other sense displays
 - occlusive HMDs often are used in conjunction with haptic displayss
- Portability
- Throughput
- Encumbrance
 - self-grounded, exoskeleton-style devices are generally much encumbering
- Safety
 - safety is a significant concern with many haptic displays

Pen-based Haptic Displays

SensAble Tech. Phantom

Hand-based Haptic Displays

Magnetic Levitation Haptic Interface, Robotics Institute, CMU Magic Wrist & UBC Wrist, 6-DOF, 20N, 4.5 mm motion range, less than 5 μm

Hand-based Haptic Displays

Immersion Corp., Laparoscopic Surgical Workstation

String-based Haptic Displays

Space Interface Device for Artificial Reality (SPIDAR) can measure end-point in 3D space & display reflect force.

Arm-based Haptic Displays

Sarcos' Dexterous Arm, includes a human-sized slave that is commanded by a master system.

Exoskeleton (Body-based Haptic Displays)

The BLEEX project, UC Berkeley, a self-powered exoskeleton, provides a versatile transport platform

Tactile Displays

Teletact Glove

- □ Sensed by the skin the largest single organ of the human body
- Actuators mounted generally on the fingers and hand
- □ Generally no need for world grounding
- Bladder actuators
- Vibrator actuators
- □ Pin actuators
- Thermo actuators
- □ Helps in the fine manipulation of virtual objects
- □ Less expensive & portable

Electro-tactile Displays

Kaczmark, Electrode array scanned by the fingertips of participants

Tactile Displays using Vibrators

CyberTouch (based on Cyberglove)

Cricket Prob

End-effector Displays

Rutgers Dextrous Master

- A mechanical device that provides a force to the participant's extremities
- Generally linked to mechanical tracking sensors
- Generally world grounded (exoskeleton method is bodygrounded)
- Often operate with respect to a single point in the virtual world
- Fast and accurate tracking is usually built into display

Robotically Operated Shape Displays

Cybernetic Systems

- Use robots to place a representation of the virtual world where the user is reaching
- May be generic (corners and edges) e.g. Cybernetic Systems
- May be specific (selection of switches) e.g. Boeing
- □ Usually uses a finger surrogate for fast tracking
- Can provide a very realistic haptic display
- World-grounded display
- Works with HMDs

Olfactory Displays

- □ Very little research is done in olfaction
- Lack of effective displays and difficulty in producing broad range of stimuli
- □ Olfactory events (odor sources) may be near or far, but directional sensitivity is generally poor
- □ Temporal sensitivity is poor and response times are slow
 - May need 20-60 seconds between stimuli to resolve different smells
 - To control over stimulus decay rate (without significant air circulation)
- Smell synthesis
- Require chemicals
- Olfactometer
- Smell-O-Vision

Olfactory Displays

- ATR Scent Projector
 - Projection-based olfactory display with nose tracking
 - Unencumbering: Users do not need to wear any devices or glasses
 - Localized: Scent can be perceived only within a limited range of space at a certain time
 - Composed of "air cannon", scene generator (aroma diffuser), 2DOF platform and a CCD camera

Image from http://www.mis.atr.jp/past/sem/scent.html

Olfactory Displays

- Wearable Olfactory Display by U. of Tokyo
 - odor-generating unit (air-pump & odor filters)
 - odor-controlling unit (a notebook PC and a device controller)
 - odor-presenting unit (to present the mixing of odor air)

Gustatory Displays

Food Simulator

- Affected by other senses strong influence of smell on taste
- Need more than flavor e.g. texture
- Basic elements of taste salt, sour, bitter, sweet, umami, smell

Vestibular Displays

- Physically move the user e.g. motion platform
- Sense of body movements or acceleration
- Vestibular information works together with visual and kinesthetic information
- Virtual body representation
- Can "display" to these senses by stimulating the proper parts of the brain

Rendering Systems

- Visual
- Aural
- Haptic

Visual Rendering Systems

- Computer graphics
 - generating visual imagery
- Software rendering
 - graphical rendering routines
- Object presentation schemes
 - Geometrically based (polygons, NURBS, CSG)
 - Non-geometric forms (volumetric rendering, particle systems)

Geometrically-based Representations

- Polygons
- □ Constructive Solid Geometry (CSG)
- □ Non-Uniform Rational B-Splines (NURBS)
- Other representations are often converted to polygons for hardware rendering

Non-geometrically-based Representations

- Volume rendering
- Particle systems

Internal Computer Representation

- Most hardware graphics rendering engines are optimized for polygonal representation
- 3D models created by a model package, Alias, SoftImage, AutoCAD, VRML
- A scene graph is a mathematical graph that allows objects and object properties (colors, materials, textures) to be related to one another in a hierarchical fashion.

Techniques for rendering complex visual scenes

- Shading
- Reducing polygons:
 - Texture mapping
 - View culling
 - Level of Detail (LOD)
 - Atmospheric effect, e.g., fog
- Multiplexing multiple renderers to one screen:
 - Added cost of additional rendering systems
 - Decrease average image latency for each frame
 - Does not decrease onset latency
 - Reduces the maximum delay between the input and the response

Aural Rendering Systems

- Sampling
 - A common way of producing sounds
 - Playback of digitally recorded samples of physical world sounds
 - 8 KHz telephone, 44 KHz CD, 96 KHz DVD quality
- Sound synthesis
 - Spectral method using sound wave's frequency spectrum
 - Physical model using physics of the object generating sound
 - Abstract synthesis is to create sound using some numerical system

Techniques for Rendering Complex Sounds

- □ Frequency modulation (FM)
- Algorithmic additive and subtractive techniques
- Granular synthesis
 - Combining the sound of a single drop of water falling to produce the sound of a waterfall
- Sonic effects
 - Convolution making a sound appear to come from a particular location
 - Reverberation using reflections of the sound
 - Chorusing mixing sounds

Haptic Rendering Systems

- Thermal rendering usually used on Peltier thermoelectric coolers
- □ Pin-based rendering
- Kinesthetic rendering using force display
- Robotically operated shape display
- Physical object rendering -3D hardcopy, aka stereolithography

Stereolithography

http://en.wikipedia.org/wiki/Stereolithography

Techniques for rendering complex haptic scenes with force displays

- □ Single point of contact with an object
 - E.g. to a fingertip or tip of a stylus
 - Required 3-DOF force display
- Single point of contact with torque
 - Required 6-DOF force display
- Constraint of movement
 - E.g. laparoscopic
- Two points of contact (pinching)
- Laparoscopic surgery interface Multiple points of contact (grasping)

Haptic Rendering Techniques

- □ Spring and dashpot
 - controls direction, tension, and damping
- □ Point and plane & Multiple plane
 - interaction between a probe stylus and a surface by placing a virtual planer surface tangential to the probe's tip
- □ Point to point
- Multi-springs
 - adds torque to any of the other haptic representations
- □ Inertial and resistant effects
 - resistive forces to add friction and viscosity
 - inertial force to add momentum
- Vibration
 - a signal indicating when the display should vibrate and at what frequency and amplitude

Reference

- An Interactive Introduction to Splines http://www.ibiblio.org/e-notes/Splines/Intro.htm
- Haptic Community Web Site http://haptic.mech.northwestern.edu/
- 3D audio http://www.dcs.gla.ac.uk/research/gaag/dell/report.htm
- VR audio http://vrlab.epfl.ch/~thalmann/VR/VRcourse_Audio.pdf
- □ Scent http://www.mis.atr.jp/past/sem/scent.html
- Image from http://webvision.med.utah.edu/sretina.html
- Image from http://www.infj.ulst.ac.uk/~pnic/HumanEar/Andy's%20Stuff/MScProject/wo rkingcode_Local/EarChapter.html
- Image from http://en.wikibooks.org/wiki/Human_Physiology/Print_Version
- Image from http://en.wikibooks.org/wiki/Human_Physiology/Print_Version
- Image from http://en.wikibooks.org/wiki/Human_Physiology/Print_Version
- Image from http://www.siggraph.org/s2003/conference/etech/food.html