
Geometric Objects
and Transformation

527970
Fall 2020

10/15/2020
Kyoung Shin Park

Computer Engineering
Dankook University

3D Transformations

 In general, three-dimensional transformation can be
thought of as an extension of two-dimensional
transformation.

 The basic principles of three-dimensional translation,
scaling, shearing are the same as those of two-
dimensional.

 However, three-dimensional rotation is a bit more
complicated.

3D Translation





























































01
'
'
'

'

1

'
dz
dy
dx

d
z
y
x

p
z
y
x

pdpp











































 

1000
100
010
001

1000
100
010
001

' 1

dz
dy
dx

T
dz
dy
dx

TTpp

3D Scale

























































11000
000
000
000

1
'
'
'

z
y
x

sz
sy

sx

z
y
x













































 

1000

0100

0010

0001

1000
000
000
000

' 1

sz

sy

sx

S
sz

sy
sx

SSpp

3D Shear

x’ = x + y cot θ
y’ = y
z’ = z

















 



1000
0100
0010
001

)(

cot

H xy

Shear along x axis

y
xx

xx
y 





'

'
 cottan

3D Rotation

 3D rotation in Z-axis
x’ = x cos – y sin
y’ = x sin + y cos
z’ = z

PRP

z
y
x

z
y
x

Z 



























































)('
11000

0100
00cossin
00sincos

1
'
'
'



)()(
)()(

1

1




TRR

RR







3D Rotation

 3D rotation in X-axis
y’ = y cos – z sin
z’ = y sin + z cos
x’ = x

PRP

z
y
x

z
y
x

X 






























































)('
11000

0cossin0
0sincos
00

1
'
'
'



3D Rotation

 3D rotation in Y-axis
x’ = x cos + z sin
z’ = -x sin + z cos
y’ = y

PRP

z
y
x

z
y
x

Y 






























































)('
11000

0cossin
00
0sincos

1
'
'
'



3D Rotation about the Origin

 A rotation by q about an arbitrary axis can be
decomposed into the concatenation of rotations
about the x, y, and z axes.

R() = RZ(Z)RY(Y)RX(X)
X, Y, Z are called the Euler angles.

q

x

z

y
v

Rotation About a Pivot other than the
Origin

 Move fixed point to origin, rotate, and then move fixed
point back.

 M = T(pf) RZ () T(-pf)

























1000
010

cossin0cossin
sincos0sincos




fff

fff

yxy
yxx

M

3D Rotation about an Arbitrary Axis

 Move P0 to the origin.
 Rotate twice to align the

arbitrary axis u with the Z-
axis.

 Rotate by θ in Z-axis.
 Undo two rotations (undo

alignment).
 Move back to P0.

)()()()()()()(00 PTRRRRRPTM xxyyzyyxx  

3D Rotation about an Arbitrary Axis

 The translation matrix, T(-P0)

























1000
100
010
001

0

0

0

z
y
x

T

3D Rotation about an Arbitrary Axis

 The rotation-axis vector
u = P2 – P1

= (x2 – x1, y2 – y1, z2 – z1)
 Normalize u:

 Rotate along x-axis until v hits xz-plane

 Rotate along y-axis until v hits z-axis


















z

y

x

u
uv





3D Rotation about an Arbitrary Axis

 Find x and y

v = (x, y, z)
x

2 + y
2 + z

2 =1
 Direction cosines:

1coscoscos

cos

cos
cos

z
222

z















yx

z

yy

xx

3D Rotation about an Arbitrary Axis

 Compute x-rotation x

22

1000

00

00

0001

)(

zy

zy

yz

xx

d

dd

ddR


































),,0(zy 

d

d
y

x

z
x










sin

cos

3D Rotation about an Arbitrary Axis

 Compute y-rotation y

22

1000
00
0010
00

)(

zy

x

x

yy

d

d

d

R



























 



Caution: Clock-wise rotation
by y-axis

xy

y d









sin

cos

),0,(dx

3D Rotation about an Arbitrary Axis

 Rotation about the z axis

 Undo alignment, Rx(-x)Ry (-y)
 Undo translation, T(P0)



















 



1000
0100
00cossin
00sincos

)(



 zzR

)()()()()()()(00 PTRRRRRPTM xxyyzyyxx  

3D Rotation about an Arbitrary Axis
Using Rotation Vectors

 3D rotation can be expressed as 4 numbers of one
angle of rotation about an arbitrary axis (ax, ay, az).

 It consists of a unit vector a (x, y, z) representing an
arbitrary axis of rotation and a value of 　 (0~360
degrees) representing the rotation angle around the
unit vector.

 3D rotation vector

+x

+y

+z



a R(, a)

3D Rotation about an Arbitrary Axis

















































































)1(cossin)cos1(sin)cos1(
sin)cos1()1(cossin)cos1(
sin)cos1(sin)cos1()1(cos

sin
0

0
0

)cos1(cos
100
010
001

sin)cos1(cosI

22

22

22

2

2

2

zzxzyyzx

xzyyyzyx

yzxzyxxx

xy

xz

yz

zzyzx

zyyyx

zxyxx

aaaaaaaa
aaaaaaaa
aaaaaaaa

aa
aa

aa

aaaaa
aaaaa
aaaaa

R







 SkewSymmetric

 From axis/angle, we make the following rotation matrix.

3D Rotation as Vector Components

 3D rotation by  around the arbitrary axis a =[ax, ay, az]



 w

3D Rotation as Vector Components

xcos

wsin

Symmetric Skew

 








x

xxxR




cos

)(

3D Rotation as Vector Components

 The vector a specifies the axis of rotation. This axis
vector must be normalized.

 The rotation angle is given by q.
 The basic idea is that any rotation can be decomposed

into weighted contributions from three different
vectors.

3D Rotation as Vector Components

 The symmetric matrix of a vector generates a vector in
the direction of the axis.

 The symmetric matrix is composed of the outer
product of a row vector and an column vector of the
same value.

3D Rotation as Vector Components

 Skew symmetric matrix of a vector generates a vector
that is perpendicular to both the axis and it's input
vector.

3D Rotation as Vector Components

 First, consider a rotation by 0. :

 For instance, a rotation about the x-axis:

3D Rotation as Vector Components

 For instance, a rotation about the y-axis:

 For instance, a rotation about the z-axis:

Quaternion

 Quaternion is a 4D complex space vector. It is a
mathematical concept used in place of a matrix when
expressing 3D rotation in computer graphics.

 It is actually the most effective way to express rotation.
 Quaternion has four components.

wzyxq

Quaternion (Imaginary Space)

 Quaternions are actually an extension to complex numbers.
 Of the 4 components, one is a ‘real’ scalar number, and

the other 3 form a vector in imaginary ijk space!

wzkyjxi q

jiijk
ikkij
kjjki

ijkkji





 1222

Quaternion (Scalar/Vector)

 The quaternion is also expressed as a scalar value s
and a vector value v.

 
ws

zyxv
s






,,
,vq

Identity Quaternion

 Unlike vectors, there are two identity quaternions.
 The multiplication identity quaternion is :

 The addition identity quaternion (which we do not use)
is :

10001,0,0,0  kjiq

0,0,0,0q

Unit Quaternion

 For convenience, we will use only unit length
quaternions, as they will make things a little easier.

 These correspond to the set of vectors that form the
‘surface’ of a 4D hyper-sphere of radius 1. The ‘surface’
is actually a 3D volume in 4D space, but it can
sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere.

 Quaternion normalization.

12222  wzyxq

2222 wzyx
qqq


 q

Quaternion as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a.

 If a has unit length, then quaternion q will also has
unit length.













2
cos,

2
sin

2
cos,

2
sin,

2
sin,

2
sin





aq

q

or

aaa zyx

Quaternion as Rotations

 

11
2

cos
2

sin
2

cos
2

sin

2
cos

2
sin

2
cos

2
sin

2
sin

2
sin

22222

22222

2222222

2222

















a

q

zyx

zyx

aaa

aaa

wzyx

Quaternion to Rotation Matrix

 Equivalent rotation matrix representing a quaternion is :

 Using unit quaternion that x2+y2+z2+w2=1, we can
reduce the matrix to :





















2222

2222

2222

2222
2222
2222

wzyxwxyzwyxz
wxyzwzyxwzxy
wyxzwzxywzyx





















22

22

22

2212222
2222122
2222221

yxwxyzwyxz
wxyzzxwzxy
wyxzwzxyzy

Quaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle  :

)(2

))(sin(222

w
scale

zaz
scale

yay

scale
xax

worzyxscale

acos

acos













Quaternion Dot Product

 The dot product of two quaternions works in the same
way as the dot product of two vectors.

 The angle between two quaternions in 4D space is half
the angle one would need to rotate from one
orientation to the other in 3D space.

cosqpqp  qpqpqpqp wwzzyyxx

Quaternion Multiplication

 If q represents a rotation and q’ represents a rotation,
then qq’ represents q rotated by q’.

 This follows very similar rules as matrix multiplication
(I.e., non-commutative). qq’ ≠ q’q

  
vvvvvv

qq




ssss
wkzjyixwzkyjxi

,'
''''

Quaternion Operations

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q = [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|


 Conjugate of quaternion, q* (켤레 사원수)
 q* = [v s]* = [–v s] = [–x, –y, –z , w]

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q|

 Exponential of quaternion
 exp(v q) = v sin q + cos q

 Logarithm of quaternion
 log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

2222 wzyx q

q = [v sin q , cos q]

q q-1 = q-1 q = 1

Quaternion Interpolation

 One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)
 Spherical Linear Interpolation (SLERP)
 Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

 If we want to do a direct interpolation between two
quaternions p and q by t.

Lerp(q1, q2, t) = (1-t) q1 + (t) q2

where 0 ≤ t ≤ 1
 Note that the Lerp operation can be thought of as a

weighted average (convex).
 We could also write it in it’s additive blend form :

Lerp(q1, q2, t) = q1 + t(q2 – q1)

q1

q2

0 ≤ t ≤ 1

Spherical Linear Interpolation (SLERP)

 If we want to interpolate between two points on a
sphere (or hypersphere), we will travel across the
surface of the sphere by following a ‘great arc.’

    

 21

2121

acos
sin
sin

sin
1sin),,(

qq

qqqq















where

tttSlerp

Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a
cubic interpolation must be done.

 Squad does a cubic interpolation between four
quaternions by t:.

 ai, ai+1 are inner quadrangle quaternions between q1 and q2.
And you have to choose carefully so that continuity is
guaranteed across se gments.

))1(2),,,(),,,((

),,,,(

11

11

tttaaslerptqqslerpslerp

taaqqSquad

iiii

iiii

 










 









 

















4
)*log()*log(exp*

4
)*log()*log(exp*

2
1
1

1
1

11

1
1

1
1

iiii
ii

iiii
ii

qqqqqa

qqqqqa

