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3D Transformations

 In general, three-dimensional transformation can be 
thought of as an extension of two-dimensional 
transformation.

 The basic principles of three-dimensional translation, 
scaling, shearing are the same as those of two-
dimensional.

 However, three-dimensional rotation is a bit more 
complicated. 



3D Translation
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3D Scale
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3D Shear

x’ = x + y cot θ
y’ = y
z’ = z
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3D Rotation

 3D rotation in Z-axis
x’ = x cos – y sin
y’ = x sin + y cos
z’ = z
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3D Rotation

 3D rotation in X-axis
y’ = y cos – z sin
z’ = y sin + z cos
x’ = x
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3D Rotation

 3D rotation in Y-axis
x’ = x cos + z sin
z’ = -x sin + z cos
y’ = y
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3D Rotation about the Origin

 A rotation by q about an arbitrary axis can be 
decomposed into the concatenation of rotations 
about the x, y, and z axes.

R() = RZ(Z)RY(Y)RX(X)
X, Y, Z are called the Euler angles.
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Rotation About a Pivot other than the 
Origin

 Move fixed point to origin, rotate, and then move fixed 
point back. 

 M = T(pf) RZ () T(-pf)
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3D Rotation about an Arbitrary Axis

 Move P0 to the origin.
 Rotate twice to align the 

arbitrary axis u with the Z-
axis.

 Rotate by θ in Z-axis.
 Undo two rotations (undo 

alignment).
 Move back to P0. 
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3D Rotation about an Arbitrary Axis

 The translation matrix, T(-P0)
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3D Rotation about an Arbitrary Axis

 The rotation-axis vector
u = P2 – P1

= (x2 – x1, y2 – y1, z2 – z1)
 Normalize u:

 Rotate along x-axis until v hits xz-plane

 Rotate along y-axis until v hits z-axis
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3D Rotation about an Arbitrary Axis

 Find x and y

v = (x, y, z)
x

2 + y
2 + z

2 =1
 Direction cosines:
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3D Rotation about an Arbitrary Axis

 Compute x-rotation x
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3D Rotation about an Arbitrary Axis

 Compute y-rotation y

22

1000
00
0010
00

)(

zy

x

x

yy

d

d

d

R



























 



Caution: Clock-wise rotation 
by y-axis

xy

y d









sin

cos

),0,( dx



3D Rotation about an Arbitrary Axis

 Rotation about the z axis

 Undo alignment, Rx(-x)Ry (-y)
 Undo translation, T(P0)
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3D Rotation about an Arbitrary Axis
Using Rotation Vectors

 3D rotation can be expressed as 4 numbers of one 
angle of rotation about an arbitrary axis (ax, ay, az). 

 It consists of a unit vector a (x, y, z) representing an 
arbitrary axis of rotation and a value of 　 (0~360 
degrees) representing the rotation angle around the 
unit vector.

 3D rotation vector

+x

+y

+z



a R(, a)



3D Rotation about an Arbitrary Axis
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 From axis/angle, we make the following rotation matrix.



3D Rotation as Vector Components

 3D rotation by  around the arbitrary axis a =[ax, ay, az]
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 w



3D Rotation as Vector Components

xcos
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3D Rotation as Vector Components

 The vector a specifies the axis of rotation. This axis 
vector must be normalized. 

 The rotation angle is given by q. 
 The basic idea is that any rotation can be decomposed 

into weighted contributions from three different 
vectors.



3D Rotation as Vector Components

 The symmetric matrix of a vector generates a vector in 
the direction of the axis.

 The symmetric matrix is composed of the outer 
product of a row vector and an column vector of the 
same value.



3D Rotation as Vector Components

 Skew symmetric matrix of a vector generates a vector 
that is perpendicular to both the axis and it's input 
vector. 



3D Rotation as Vector Components

 First, consider a rotation by 0. : 

 For instance, a rotation about the x-axis:



3D Rotation as Vector Components

 For instance, a rotation about the y-axis:

 For instance, a rotation about the z-axis:



Quaternion

 Quaternion is a 4D complex space vector. It is a 
mathematical concept used in place of a matrix when 
expressing 3D rotation in computer graphics.

 It is actually the most effective way to express rotation.
 Quaternion has four components.

wzyxq



Quaternion (Imaginary Space)

 Quaternions are actually an extension to complex numbers.
 Of the 4 components, one is a ‘real’ scalar number, and 

the other 3 form a vector in imaginary ijk space!
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Quaternion (Scalar/Vector)

 The quaternion is also expressed as a scalar value s 
and a vector value v.
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Identity Quaternion

 Unlike vectors, there are two identity quaternions.
 The multiplication identity quaternion is :

 The addition identity quaternion (which we do not use) 
is :

10001,0,0,0  kjiq

0,0,0,0q



Unit Quaternion

 For convenience, we will use only unit length 
quaternions, as they will make things a little easier. 

 These correspond to the set of vectors that form the 
‘surface’ of a 4D hyper-sphere of radius 1. The ‘surface’ 
is actually a 3D volume in 4D space, but it can 
sometimes be visualized as an extension to the 
concept of a 2D surface on a 3D sphere.

 Quaternion normalization.

12222  wzyxq

2222 wzyx
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Quaternion as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a.

 If a has unit length, then quaternion q will also has 
unit length.
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Quaternion as Rotations
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Quaternion to Rotation Matrix

 Equivalent rotation matrix representing a quaternion is :

 Using unit quaternion that x2+y2+z2+w2=1, we can 
reduce the matrix to :
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Quaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle  : 
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Quaternion Dot Product

 The dot product of two quaternions works in the same 
way as the dot product of two vectors.

 The angle between two quaternions in 4D space is half 
the angle one would need to rotate from one 
orientation to the other in 3D space.

cosqpqp  qpqpqpqp wwzzyyxx



Quaternion Multiplication

 If q represents a rotation and q’ represents a rotation, 
then qq’ represents q rotated by q’.

 This follows very similar rules as matrix multiplication 
(I.e., non-commutative). qq’ ≠ q’q
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Quaternion Operations

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q =  [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|


 Conjugate of quaternion, q* (켤레 사원수)
 q* = [v s]* = [–v s] = [–x, –y, –z , w] 

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q| 

 Exponential of quaternion
 exp(v q) = v sin q + cos q

 Logarithm of quaternion
 log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

2222 wzyx q

q = [v sin q , cos q]

q q-1 = q-1 q = 1



Quaternion Interpolation

 One of the key benefits of using a quaternion 
representation is the ability to interpolate between key 
frames.

alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)
 Spherical Linear Interpolation (SLERP)
 Spherical Cubic Interpolation (SQUAD)



Linear Interpolation (LERP)

 If we want to do a direct interpolation between two 
quaternions p and q by t.

Lerp(q1, q2, t) = (1-t) q1 + (t) q2

where 0 ≤ t  ≤ 1
 Note that the Lerp operation can be thought of as a 

weighted average (convex).
 We could also write it in it’s additive blend form :

Lerp(q1, q2, t) = q1 + t(q2 – q1)

q1

q2

0 ≤ t ≤ 1



Spherical Linear Interpolation (SLERP)

 If we want to interpolate between two points on a 
sphere (or hypersphere), we will travel across the 
surface of the sphere by following a ‘great arc.’
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Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a 
cubic interpolation must be done.

 Squad does a cubic interpolation between four 
quaternions by t:. 

 ai, ai+1 are inner quadrangle quaternions between q1 and q2. 
And you have to choose carefully so that continuity is 
guaranteed across se gments.
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