Geometric Objects and Transformation

527970
Fall 2020
10/15/2020
Kyoung Shin Park
Computer Engineering
Dankook University

3D Transformations

- In general, three-dimensional transformation can be thought of as an extension of two-dimensional transformation.
- The basic principles of three-dimensional translation, scaling, shearing are the same as those of two-dimensional.
- However, three-dimensional rotation is a bit more complicated.

3D Translation

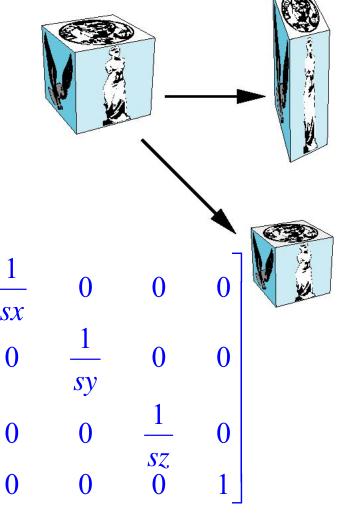
$$p' = p + d \qquad p = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad p' = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} \qquad d = \begin{bmatrix} dx \\ dy \\ dz \\ 0 \end{bmatrix}$$

$$p' = Tp \qquad T = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T^{-1} = \begin{bmatrix} 1 & 0 & 0 & -dx \\ 0 & 1 & 0 & -dy \\ 0 & 0 & 1 & -dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

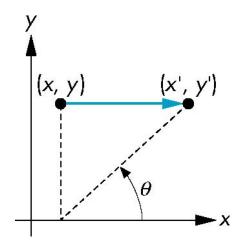
3D Scale

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$p' = Sp \qquad S = \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

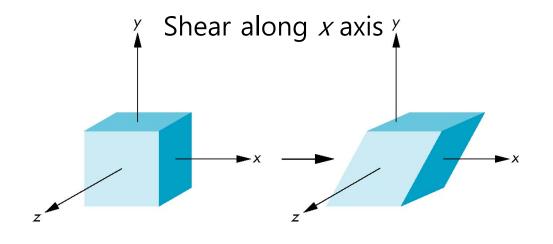


3D Shear



$$x' = x + y \cot \theta$$

 $y' = y$
 $z' = z$



$$\mathbf{H}_{xy}(\theta) = \begin{bmatrix} 1 & \mathbf{cot} \, \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\tan \theta = \frac{y}{x' - x} \Rightarrow \cot \theta = \frac{x' - x}{y}$$

3D Rotation

■ 3D rotation in Z-axis

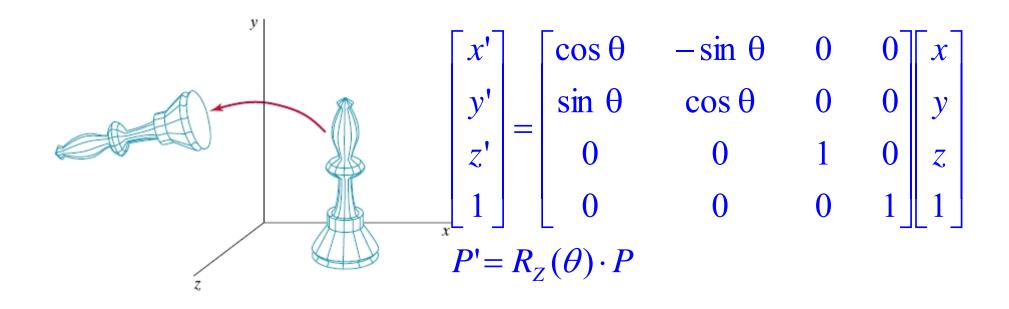
$$x' = x \cos\theta - y \sin\theta$$

$$y' = x \sin\theta + y \cos\theta$$

$$z' = z$$

$$R^{-1}(\theta) = R(-\theta)$$

$$R^{-1}(\theta) = R^{T}(\theta)$$

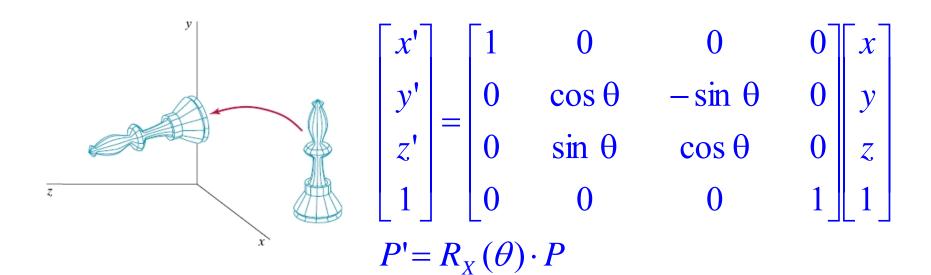


3D Rotation

■ 3D rotation in X-axis

$$y' = y \cos\theta - z \sin\theta$$

 $z' = y \sin\theta + z \cos\theta$
 $x' = x$

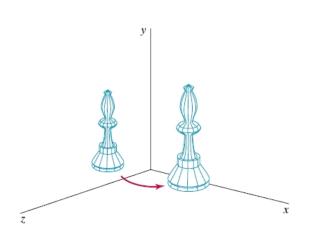


3D Rotation

■ 3D rotation in Y-axis

$$x' = x \cos\theta + z \sin\theta$$

 $z' = -x \sin\theta + z \cos\theta$
 $y' = y$



$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

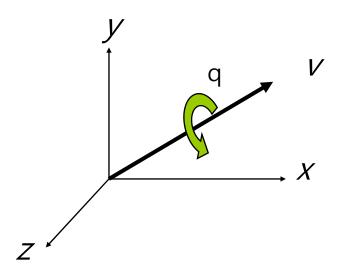
$$P' = R_y(\theta) \cdot P$$

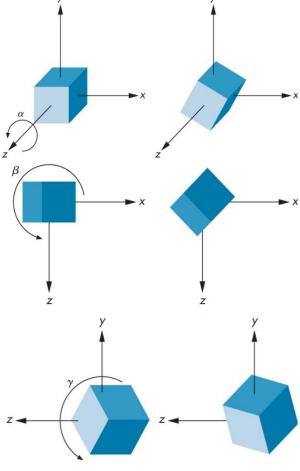
3D Rotation about the Origin

■ A rotation by q about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes.

$$R(\theta) = R_Z(\theta_Z)R_Y(\theta_Y)R_X(\theta_X)$$

 θ_{X} , θ_{Y} , θ_{Z} are called the Euler angles.

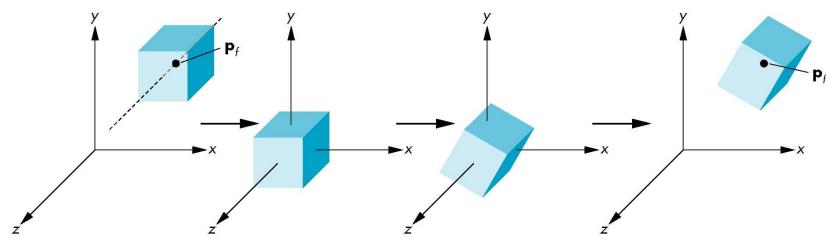




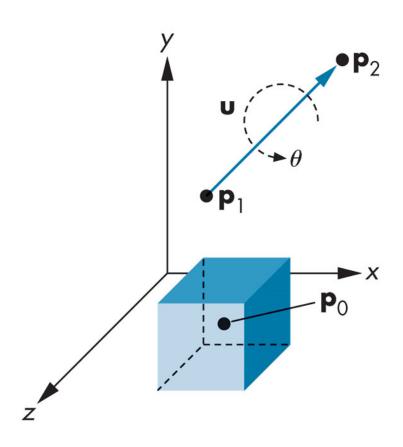
Rotation About a Pivot other than the Origin

- Move fixed point to origin, rotate, and then move fixed point back.
- $\square \mathbf{M} = \mathbf{T}(p_f) \mathbf{R}_{\mathbf{Z}} (\theta) \mathbf{T}(-p_f)$

$$M = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & x_f - x_f \cos \theta + y_f \sin \theta \\ \sin \theta & \cos \theta & 0 & y_f - x_f \sin \theta - y_f \cos \theta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



- \blacksquare Move P_0 to the origin.
- Rotate twice to align the arbitrary axis u with the Z-axis.
- \blacksquare Rotate by θ in Z-axis.
- Undo two rotations (undo alignment).
- \blacksquare Move back to P_0 .



$$M = T(P_0)R_x(-\theta_x)R_y(-\theta_y)R_z(\theta)R_y(\theta_y)R_x(\theta_x)T(-P_0)$$

■ The translation matrix, $T(-P_0)$

$$T = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

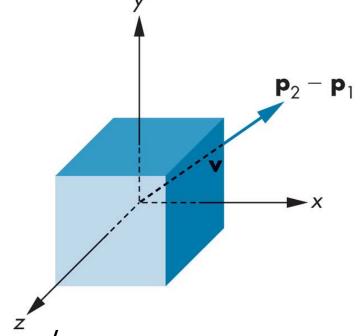
□ The rotation-axis vector

$$u = P_2 - P_1$$

= $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$

■ Normalize u:

$$v = \frac{u}{\|u\|} = \begin{bmatrix} \alpha_x \\ \alpha_y \\ \alpha_z \end{bmatrix}$$



- Rotate along x-axis until v hits xz-plane
- Rotate along y-axis until v hits z-axis

 \Box Find θ_x and θ_y

$$v = (\alpha_x, \alpha_y, \alpha_z)$$

$$\alpha_x^2 + \alpha_y^2 + \alpha_z^2 = 1$$

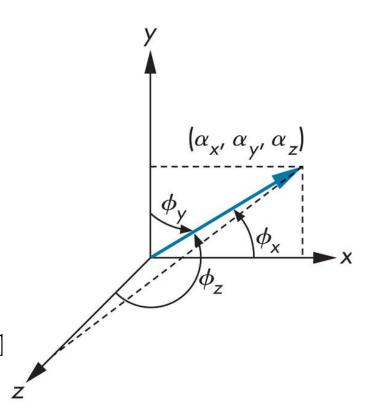
Direction cosines:

$$\cos \phi_x = \alpha_x$$

$$\cos \phi_y = \alpha_y$$

$$\cos \phi_z = \alpha_z$$

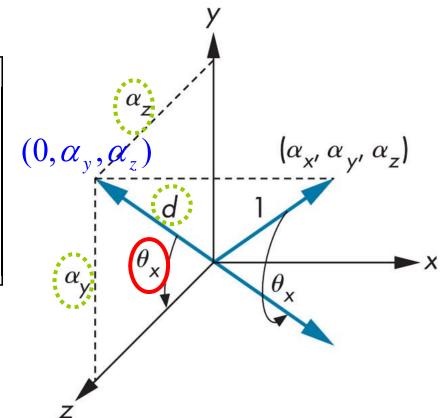
$$\cos^2 \phi_x + \cos^2 \phi_y + \cos^2 \phi_z = 1$$



 \Box Compute x-rotation θ_x

$$R_{x}(\theta_{x}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{\alpha_{z}}{d} & -\frac{\alpha_{y}}{d} & 0 \\ 0 & \frac{\alpha_{y}}{d} & \frac{\alpha_{z}}{d} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (0, \alpha_{y}, \alpha_{z})$$

$$d = \sqrt{\alpha_{y}^{2} + \alpha_{z}^{2}}$$



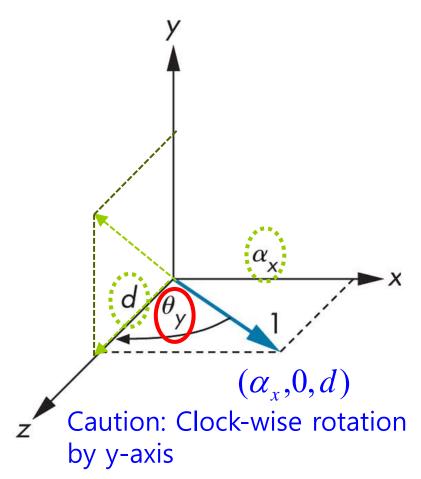
$$\cos \theta_x = \frac{\alpha_z}{d}$$

$$\sin \theta_x = \frac{\alpha_y}{d}$$

 \Box Compute y-rotation θ_{v}

$$R_{y}(\theta_{y}) = \begin{bmatrix} d & 0 & -\alpha_{x} & 0 \\ 0 & 1 & 0 & 0 \\ \alpha_{x} & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$d = \sqrt{\alpha_{y}^{2} + \alpha_{z}^{2}}$$

$$d = \sqrt{\alpha_y^2 + \alpha_z^2}$$



Rotation about the z axis

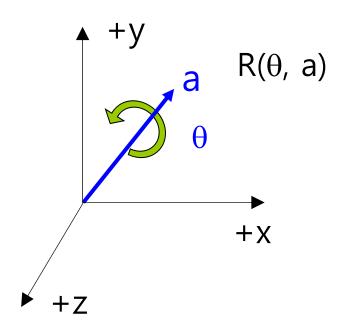
$$R_{z}(\theta_{z}) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- □ Undo alignment, $R_x(-\theta_x)R_y(-\theta_y)$
- Undo translation, $T(P_0)$

$$\square M = T(P_0)R_x(-\theta_x)R_y(-\theta_y)R_z(\theta)R_y(\theta_y)R_x(\theta_x)T(-P_0)$$

3D Rotation about an Arbitrary Axis Using Rotation Vectors

- 3D rotation can be expressed as 4 numbers of one angle of rotation about an arbitrary axis (ax, ay, az).
- It consists of a unit vector a (x, y, z) representing an arbitrary axis of rotation and a value of (0~360 degrees) representing the rotation angle around the unit vector.
- 3D rotation vector



From axis/angle, we make the following rotation matrix.

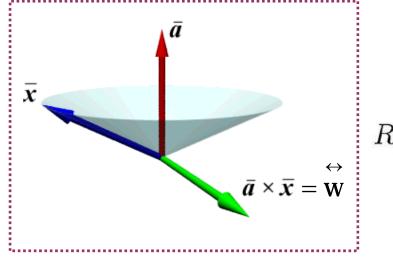
$$R = I\cos\theta +$$
Symmetric $(1-\cos\theta) +$ **Skew** $\sin\theta$

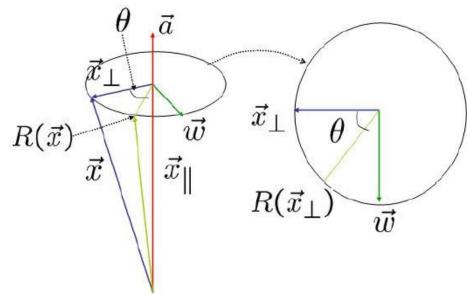
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cos \theta + \begin{bmatrix} a_x^2 & a_x a_y & a_x a_z \\ a_x a_y & a_y^2 & a_y a_z \\ a_x a_z & a_y a_z & a_z^2 \end{bmatrix} (1 - \cos \theta) + \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \sin \theta$$

$$= \begin{bmatrix} a_x^2 + \cos\theta(1 - a_x^2) & a_x a_y (1 - \cos\theta) - a_z \sin\theta & a_x a_z (1 - \cos\theta) + a_y \sin\theta \\ a_x a_y (1 - \cos\theta) + a_z \sin\theta & a_y^2 + \cos\theta(1 - a_y^2) & a_y a_z (1 - \cos\theta) - a_x \sin\theta \\ a_x a_z (1 - \cos\theta) - a_y \sin\theta & a_y a_z (1 - \cos\theta) + a_x \sin\theta & a_z^2 + \cos\theta(1 - a_z^2) \end{bmatrix}$$

 \blacksquare 3D rotation by θ around the arbitrary axis $a = [a_x, a_y, a_z]$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{pmatrix} \mathbf{Symmetric} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \begin{pmatrix} 1 - \cos \theta \end{pmatrix} + \mathbf{Skew} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \sin \theta + \mathbf{I} \cos \theta \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$





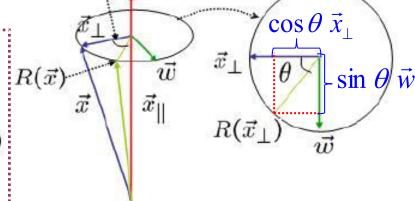
3D Rotation as Vector Components $(R(\vec{x}_{\perp}) \cdot \vec{x}_{\perp})\vec{x}_{\perp}$

$$\vec{w} = \vec{a} \times \vec{x}_{\perp}$$

$$= \vec{a} \times (\vec{x} - \vec{x}_{\parallel})$$

$$= (\vec{a} \times \vec{x}) - (\vec{a} \times \vec{x}_{\parallel})$$

$$= \vec{a} \times \vec{x}$$



$$R(\vec{x}_{\perp}) = \cos\theta \vec{x}_{\perp} + \sin\theta \vec{w}$$

$$\vec{x}_{\parallel} = (\vec{a} \cdot \vec{x})\vec{a}$$

$$\vec{x}_{\perp} = \vec{x} - \vec{x}_{\parallel} = \vec{x} - (\vec{a} \cdot \vec{x})\vec{a}$$

 $=\cos\theta\vec{X}_{\perp}$

$$R(\vec{x}) = R(\vec{x}_{\parallel}) + R(\vec{x}_{\perp})$$

$$= R(\vec{x}_{\parallel}) + \cos\theta\vec{x}_{\perp} + \sin\theta\vec{w}$$

$$= (\vec{a} \cdot \vec{x})\vec{a} + \cos\theta(\vec{x} - (\vec{a} \cdot \vec{x})\vec{a}) + \sin\theta\vec{w}$$

$$= \cos\theta\vec{x} + (1 - \cos\theta)(\vec{a} \cdot \vec{x})\vec{a} + \sin\theta(\vec{a} \times \vec{x})$$
Symmetric Skew

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \left(\mathbf{Symmetric} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \right) (1 - \cos \theta) + \mathbf{Skew} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \sin \theta + \mathbf{I} \cos \theta \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- The vector *a* specifies the axis of rotation. This axis vector must be normalized.
- The rotation angle is given by q.
- The basic idea is that *any rotation can be decomposed into weighted contributions from three different vectors.*

- *The symmetric matrix of a vector* generates a vector in the direction of the axis.
- The symmetric matrix is composed of the outer product of a row vector and an column vector of the same value.

Symmetric
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \end{bmatrix} = \begin{bmatrix} a_x^2 & a_x a_y & a_x a_z \\ a_x a_y & a_y^2 & a_y a_z \\ a_x a_z & a_y a_z & a_z^2 \end{bmatrix}$$

Symmetric
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \overline{a}(\overline{a} \cdot \overline{x})$$

■ Skew symmetric matrix of a vector generates a vector that is perpendicular to both the axis and it's input vector.

$$\operatorname{Skew}\begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix} = \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix}$$

$$\operatorname{Skew}(\overline{a})\overline{x} = \overline{a} \times \overline{x}$$

□ First, consider a rotation by 0. :

$$Rotate \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix}, 0 = \begin{bmatrix} a_{x}^{2} & a_{x}a_{y} & a_{x}a_{z} \\ a_{x}a_{y} & a_{y}^{2} & a_{y}a_{z} \\ a_{x}a_{z} & a_{y}a_{z} & a_{z}^{2} \end{bmatrix} (1-1) + \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix} 0 + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} 1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

■ For instance, a rotation about the x-axis:

$$Rotate \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \theta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} (1 - \cos \theta) + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \sin \theta + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cos \theta$$

$$Rotate \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \theta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

■ For instance, a rotation about the y-axis:

$$Rotate \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \theta = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} (1 - \cos \theta) + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \sin \theta + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cos \theta$$

$$Rotate \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \theta = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

■ For instance, a rotation about the z-axis:

$$Rotate \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \theta = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} (1 - \cos \theta) + \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sin \theta + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cos \theta$$

$$Rotate \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \theta = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Quaternion

- Quaternion is a 4D complex space vector. It is a mathematical concept used in place of a matrix when expressing 3D rotation in computer graphics.
- It is actually the most effective way to express rotation.
- Quaternion has four components.

$$\mathbf{q} = \langle x \quad y \quad z \quad w \rangle$$

Quaternion (Imaginary Space)

- Quaternions are actually an extension to complex numbers.
- □ Of the 4 components, one is a 'real' scalar number, and the other 3 form a vector in imaginary ijk space!

$$\mathbf{q} = xi + yj + zk + w$$

$$i^2 = j^2 = k^2 = ijk = -1$$

$$i = jk = -kj$$

$$j = ki = -ik$$

$$k = ij = -ji$$

Quaternion (Scalar/Vector)

■ The quaternion is also expressed as a scalar value s and a vector value v.

$$\mathbf{q} = \langle \mathbf{v}, s \rangle$$

$$v = (x, y, z)$$

$$s = w$$

Identity Quaternion

- Unlike vectors, there are two identity quaternions.
- □ The multiplication identity quaternion is:

$$\mathbf{q} = \langle 0, 0, 0, 1 \rangle = 0i + 0j + 0k + 1$$

■ The addition identity quaternion (which we do not use) is:

$$\mathbf{q} = \langle 0,0,0,0 \rangle$$

Unit Quaternion

- For convenience, we will use only unit length quaternions, as they will make things a little easier.
- □ These correspond to the set of vectors that form the 'surface' of a 4D hyper-sphere of radius 1. The 'surface' is actually a 3D volume in 4D space, but it can sometimes be visualized as an extension to the concept of a 2D surface on a 3D sphere.

$$|\mathbf{q}| = \sqrt{x^2 + y^2 + z^2 + w^2} = 1$$

Quaternion normalization.

$$q = \frac{q}{|\mathbf{q}|} = \frac{q}{\sqrt{x^2 + y^2 + z^2 + w^2}}$$

Quaternion as Rotations

 \Box A quaternion can represent a rotation by an angle θ around a unit axis **a**.

$$\mathbf{q} = \begin{bmatrix} a_x \sin \frac{\theta}{2}, & a_y \sin \frac{\theta}{2}, & a_z \sin \frac{\theta}{2}, & \cos \frac{\theta}{2} \end{bmatrix}$$

or

$$\mathbf{q} = \left[\mathbf{a} \sin \frac{\theta}{2}, \quad \cos \frac{\theta}{2} \right]$$

If a has unit length, then quaternion q will also has unit length.

Quaternion as Rotations

$$|\mathbf{q}| = \sqrt{x^2 + y^2 + z^2 + w^2}$$

$$= \sqrt{a_x^2 \sin^2 \frac{\theta}{2} + a_y^2 \sin^2 \frac{\theta}{2} + a_z^2 \sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2}}$$

$$= \sqrt{\sin^2 \frac{\theta}{2} (a_x^2 + a_y^2 + a_z^2) + \cos^2 \frac{\theta}{2}}$$

$$= \sqrt{\sin^2 \frac{\theta}{2} |\mathbf{a}|^2 + \cos^2 \frac{\theta}{2}} = \sqrt{\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2}}$$

$$= \sqrt{1} = 1$$

Quaternion to Rotation Matrix

■ Equivalent rotation matrix representing a quaternion is :

$$\begin{bmatrix} x^{2} - y^{2} - z^{2} + w^{2} & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & -x^{2} + y^{2} - z^{2} + w^{2} & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & -x^{2} - y^{2} + z^{2} + w^{2} \end{bmatrix}$$

■ Using unit quaternion that $x^2+y^2+z^2+w^2=1$, we can reduce the matrix to :

$$\begin{bmatrix}
1-2y^{2}-2z^{2} & 2xy-2wz & 2xz+2wy \\
2xy+2wz & 1-2x^{2}-2z^{2} & 2yz-2wx \\
2xz-2wy & 2yz+2wx & 1-2x^{2}-2y^{2}
\end{bmatrix}$$

Quaternion to Axis/Angle

□ To convert a quaternions to a rotation axis, a (a_x, a_y, a_z) and an angle θ :

$$scale = \sqrt{x^2 + y^2 + z^2}$$
 or $sin(acos(w))$
 $ax = \frac{x}{scale}$
 $ay = \frac{y}{scale}$
 $az = \frac{z}{scale}$
 $\theta = 2acos(w)$

Quaternion Dot Product

■ The dot product of two quaternions works in the same way as the dot product of two vectors.

$$\mathbf{p} \cdot \mathbf{q} = x_p x_q + y_p y_q + z_p z_q + w_p w_q = |\mathbf{p}| |\mathbf{q}| \cos \varphi$$

■ The angle between two quaternions in 4D space is half the angle one would need to rotate from one orientation to the other in 3D space.

Quaternion Multiplication

- If q represents a rotation and q' represents a rotation, then qq' represents q rotated by q'.
- This follows very similar rules as matrix multiplication (I.e., non-commutative). qq' ≠ q'q

$$\mathbf{q}\mathbf{q}' = (xi + yj + zk + w)(x'i + y'j + z'k + w')$$
$$= \langle s\mathbf{v}' + s'\mathbf{v} + \mathbf{v}' \times \mathbf{v}, ss' - \mathbf{v} \cdot \mathbf{v}' \rangle$$

Quaternion Operations

- Negation of quaternion, -q
 - -[v s] = [-v -s] = [-x, -y, -z, -w]
- Addition of two quaternion, p + q
 - p + q = [pv, ps] + [qv, qs] = [pv + qv, ps + qs]
- Magnitude of quaternion, |q|
 - $|\mathbf{q}| = \sqrt{x^2 + y^2 + z^2 + w^2}$
- Conjugate of quaternion, q* (켤레 사원수)
 - $q^* = [v \ s]^* = [-v \ s] = [-x, -y, -z, w]$
- □ Multiplicative inverse of quaternion, q⁻¹ (역수)_{q q⁻¹ = q⁻¹ q = 1}
 - $q^{-1} = q^*/|q|$
- Exponential of quaternion
 - = exp(v q) = v sin q + cos q
- □ Logarithm of quaternion q = [v sin q, cos q]
 - log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

Quaternion Interpolation

One of the key benefits of using a quaternion representation is the ability to interpolate between key frames.

```
alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()
```

- Quaternion Interpolation
 - Linear Interpolation (LERP)
 - Spherical Linear Interpolation (SLERP)
 - Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

If we want to do a direct interpolation between two quaternions p and q by t.

Lerp(
$$\mathbf{q_1}$$
, $\mathbf{q_2}$, t) = (1-t) $\mathbf{q_1}$ + (t) $\mathbf{q_2}$
where $0 \le t \le 1$

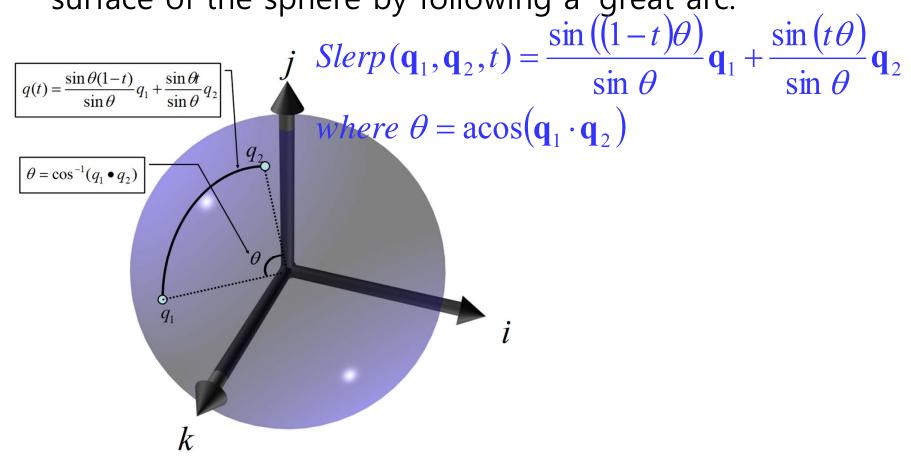
- Note that the Lerp operation can be thought of as a weighted average (convex).
- We could also write it in it's additive blend form : P q₂

Lerp(
$$q_1$$
, q_2 , t) = q_1 + $t(q_2 - q_1)$

0 ≤ t ≤ 1

Spherical Linear Interpolation (SLERP)

■ If we want to interpolate between two points on a sphere (or hypersphere), we will travel across the surface of the sphere by following a 'great arc.'



Spherical Cubic Interpolation (SQUAD)

- To achieve C² continuity between curve segments, a cubic interpolation must be done.
- Squad does a cubic interpolation between four quaternions by t:.

 $Squad(q_i, q_{i+1}, a_i, a_{i+1}, t)$

=
$$slerp(slerp(q_i, q_{i+1}, t), slerp(a_i, a_{i+1}, t), 2t(1-t))$$

$$a_i = q_i * \exp\left(\frac{-\log(q_i^{-1} * q_{i-1}) + \log(q_i^{-1} * q_{i+1})}{4}\right)$$

$$a_{i+1} = q_{i+1} * \exp\left(\frac{-\log(q_{i+1}^{-1} * q_i) + \log(q_{i+1}^{-1} * q_{i+2})}{4}\right)$$

ai, ai+1 are inner quadrangle quaternions between q1 and q2. And you have to choose carefully so that continuity is guaranteed across se gments.