Geometric Objects
and Transformation

527970
Fall 2020
10/15/2020
Kyoung Shin Park
Computer Engineering
Dankook University

3D Transformations

O In general, three-dimensional transformation can be
thought of as an extension of two-dimensional
transformation.

0 The basic principles of three-dimensional translation,
scaling, shearing are the same as those of two-
dimensional.

0 However, three-dimensional rotation is a bit more
complicated.

3D Translation

X X' dx
, y Yy dy
p=p+d p= p'=",| d=
Z Z dz
1 1 0 |
1 0 0 dx 1 0 0 —dx
0O 1 0 d 0O 1 0 -—d
p=Tp T= dRRE Y
0 0 1 dz 0 0 1 —dz
0o 0 0 1 0 0 0 1

3D Scale

3D Shear

)A/ ¥ Shear along x axis ¥

(x, y) x', y)

° e

e
Y ., 7

X' =X +ycotB - -

- Y coto
Yy =Y
Z =7

[
o = O O
—_—e O O

o o o =
S

3D Rotation

o 3D rotation in Z-axis
X' = X CosO —y sin®
y' = X sind + y coso
Z' =7z

R™(6)=R(-0)
R(0)=R" ()

—sm 0

cos O

oS = O O

_—0 O O

_ N < X

3D Rotation

O 3D rotation in X-axis
y' =y cos® — z sinb

I/

Z' =y sind + z coso

I

X =X

_—0 O O

— N << X

3D Rotation

0o 3D rotation in Y-axis
X' = X cosO + z sin®

I/

Z' = -xsin® + z cosO

I/

y =Y

o O = O

sin O

cos O

_—0 O O

_ N << X

3D Rotation about the Origin

O A rotation by g about an arbitrary axis can be
decomposed into the concatenation of rotations

about the x, y, and z axes. | ”
R(0) = Rz(02)Ry(0y)Ry(0y)
0y, 6y, 6, are called the Euler angles. a " /

s
q V

/

Rotation About a Pivot other than the
Origin

0 Move fixed point to origin, rotate, and then move fixed
point back.

0 M = T(pg) Rz (6) T(-py)

(cos® —sn® 0 X, —X, cos@+Y,sind|

M smO cosO 0 y,—X,smé-Y,cosl
1o 0 1 0

0 0 0 1 |

Y . Y Y y

A A y N

A P
" [1 ./Pt

X
Zz

3D Rotation about an Arbitrary Axis

O Move P, to the origin. y
O Rotate twice to align the A
arbitrary axis u with the Z-
axis.

0 Rotate by 0O in Z-axis.

o Undo two rotations (undo
alignment).

O Move back to P,,.

Z

WEE Ny, . S gad RN
. ¥, sEEEEEEEEEEEEEEEEEEEEEEEEEEEsssss 00020000 EEEEEEEEEsEEEEEEEsssssEEsmmmE, %% " Wa

M =T (P,

*

L 4
.0

.
.

3D Rotation about an Arbitrary Axis

O The translation matrix, T(-P,)

1 0 0 =X
T_ 0O 1 0 -y,
o 0 1 -z
0 0 0 1

3D Rotation about an Arbitrary Axis

O The rotation-axis vector y

= X = X4, Yo = Y1 2o — Z4)
O Normalize u:

V==l
Jul

O Rotate along x-axis until v hits Xzz-p/ane

O Rotate along y-axis until v hits z-axis

3D Rotation about an Arbitrary Axis

o Find 0, and 0,

v = (o, o, o) i’
o’ + ol + o2 =1
X y z
O Direction cosines: (@ @,)
cosg, =, &
Y |
cosp, =a, b
cosg, =a, e

cos” @, +cos’ g, + cos’ @, =1

3D Rotation about an Arbitrary Axis

0o Compute x-rotation 6, y
_ _ A
1 0 0 0
a
0 FZ _Fy 0
R,(6,) =
X X o
0o X Z 9
d d
0o 0 0 1

_ 2 2
d —\/ay +a;

3D Rotation about an Arbitrary Axis

o Compute y-rotation 9, y
A
'd 0 -a 0]
R (0.) = 0 1 0 0
Y la, 0 d 0 &
00 1 .

_ 2 2
d —\/ay +a;

~> Caution: Clock-wise rotation
by y-axis

3D Rotation about an Arbitrary Axis

O Rotation about the z axis

(cosfd —sin O

R.(0,)=
,(0,) 0 0

0
sin & coséd O
1
0 0 0

I*—*OOOI

0 Undo alignment, RX(—OX)Ry (—Gy)
O Undo translation, T(P)

M =T (R)R,(=6)R, (=6,)R, (O)R, (6,)R, (6T (-R)

3D Rotation about an Arbitrary Axis
Using Rotation Vectors

0 3D rotation can be expressed as 4 numbers of one
angle of rotation about an arbitrary axis (ax, ay, az).

O It consists of a unit vector a (x, y, z) representing an
arbitrary axis of rotation and a value of (0~360
degrees) representing the rotation angle around the
unit vector.

O 3D rotation vector

+Z

3D Rotation about an Arbitrary Axis

0 From axis/angle, we make the following rotation matrix.

R =Icos#+Symmetric (1-cosé)+Skew smn 6

1
=10
0

0 0 a
I Ojcost+|a,a,
0 1 a,a,

a: +cosd(l-a)
a,a,(l-cost)+a,sn 0

a,8,(l-cosf)-a,smb aa, (l-cosf)+a,smnb

aa
2
ay

a,a

a,8,(l-cost)-a,smod aa,(l-cosf)+a,snd

y

Z

a'XaZ _
8,8, (I-cosf)+
a2

z

2 2
a, +cosf(l-a))

0 -a, g,
a, 0 -a |smf
-a, a, 0 |

a,8,(1-cosf)—a, sm &
a’ +cosf(1-a’)

3D Rotation as Vector Components

0 3D rotation by 6 around the arbitrary axis a =[a,, a,, a,]
-1 (o) L
X a a X
y'|=| Symmetric| | a, | (1-cos0)+Skew||a, | [sin6+IcosO | y
']\ L4) L4) JLZ

3D Rotation as Vector Components

G NN NN NN NN NN NN NN NN NN NN NN NS EEEENEENEEEEEEEEEEEDN

my
P
&l
j —
|

3D Rotation as Vector Components

] . N 1 \T
X a, a, X
y'|=| Symmetric| | g, | [(1-cos0)+Skew| | a, | [sinB+Icosb | y
2]\ L% L%) JLZ_

O The vector a specifies the axis of rotation. This axis
vector must be normalized.

O The rotation angle is given by q.

O The basic idea is that any rotation can be decomposed
into weighted contributions from three different
vectors.

3D Rotation as Vector Components

O 7he symmetric matrix of a vector generates a vector in
the direction of the axis.

0 The symmetric matrix is composed of the outer
product of a row vector and an column vector of the
same value.

Ta,]\ [a. a; aa, aa,

Symmetric| | a, | |=| a, [ax a, az]: aa, a, a,a,
la.|]) |a. aa, aa, a;
(Ta_]\ x]

I

=
Q)
=

o’

Symmetric| | a_ || y

3D Rotation as Vector Components

O Skew symmetric matrix of a vector generates a vector
that is perpendicular to both the axis and it's input
vector.

Ta T
a. 0 -a, a
Skew| |a, | |=| a, 0 -a,
\L4:-]) |74, 4 0

3D Rotation as Vector Components

O First, consider a rotation by 0. :

Rotate

L

I - \

= £

A-D+| a. 0

a, | [t 0 0]
—a, [0+]0 1 0
0| [0 0 1)

O For instance, a rotation about the x-axis:

Rotate

Ty

1

0

.6

0_

A

1 0 0] [0 0 0]
0 0 0j1-cos)+|0 0O -1
0 0 0] 01 0
M1]) [1 o 0

Rotate ,01=10 cosfl —sinf

0 sinf cosl

L / L .

sinf +

(1 0 0]

0 1 O0lcosf

0 0 1

1 0 0]

0 0 1]

3D Rotation as Vector Components

O For instance, a rotation about the y-axis:
o]) [0 0 0 (0 0 1] (1 0 0]

Rotate||1 .0 |=]0 1 0|(1-=cosh+|[0 0 Ofsin6@+|0 1 Ofcost

lo] J [0 0 o -1 0 0 0 0 1
10l) [cos@ O sinf]
Rotate||1].6|=| 0 1 0
0 _—sinB 0 cosﬂ_

LS /

O For instance, a rotation about the z-axis:
o1 Y [0 0 0O 0 -1 0] (1 0 0]

Rotate|| 0 |,0 0 0 Ol=cosH+|1 O Olsinf@+|0 1 Ofcost

1]) [0 0 1 0 0 0 0 0 1)

0]) [cos@ —sinf 0]

Rotate|| 0,0 |=|sinf cosfl 0

1) 0 0 1]

0 Quaternion is a 4D complex space vector. It is a
mathematical concept used in place of a matrix when
expressing 3D rotation in computer graphics.

O It is actually the most effective way to express rotation.
0 Quaternion has four components.

q=(X y z w)

Quaternion (Imaginary Space)

0 Quaternions are actually an extension to complex numbers.

o Of the 4 components, one is a ‘real’ scalar number, and
the other 3 form a vector in imaginary ijk space!

q=Xl+Vy]+zk+w

2= 7 =k* =ijk =—1
i = jk =—k]
j = ki =ik

K=1 =—]l

Quaternion (Scalar/Vector)

O The quaternion is also expressed as a scalar value s
and a vector value v.

q=(V,s)
v=(xy,2)
S =W

Identity Quaternion

0 Unlike vectors, there are two identity quaternions.
0 The multiplication identity quaternion is :

q=(0,0,0,1)=0i+0j+0k +1

0 The addition identity quaternion (which we do not use)
IS .

q =(0,0,0,0)

O For convenience, we will use only unit length
quaternions, as they will make things a little easier.

0O These correspond to the set of vectors that form the
'surface’ of a 4D hyper-sphere of radius 1. The ‘surface’
Is actually a 3D volume in 4D space, but it can
sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere.

\q\z\/szrszrzerw2 =1

O Quaternion normalization.

q= q _ (g
\Q\ \/x2+y2+zz+wz

Quaternion as Rotations

0O A quaternion can represent a rotation by an angle 6
around a unit axis a.

{ . . . e}
q=|a,sm-—, a,sm-—, a,Sm—, COS—

2 2 2 2
or

= {asin Q cosg}
1 2’ 2

o If a has unit length, then quaternion g will also has
unit length.

Quaternion as Rotations

\q\:\/xzjtszrzerw2

\/a 0 0 0 0
S]l’l —+a S]l’l —+a S]l’l — 4+ COS —
) 9 9 2

:\/sinzg(ai +a§ +a22)+coszg

:\/sinzg‘a‘z +coszg :\/sinngrcoszg

2 2 2
—J1=1

Quaternion to Rotation Matrix

0 Equivalent rotation matrix representing a quaternion is :

x2 _ yz 72 2
2XYy+ 2wz

2XZ—2wWy

2Xy—2wWz
— X+ Yy - +W
2YZ + 2WX

2XZ+ 2wy
2YyzZ —2WX

—X =Y+ 4+W

0 Using unit quaternion that x2+y?+z2+w?=1, we can
reduce the matrix to :

1-2y?-27°
2XYy+ 2wz

2XZ—-2wWy

2XYy—2WZ
1-2x*-2z2°
2YZ +2WX

2XZ+2Wy)
2YZ — 2WX
1-2x*=2y*

Quaternion to Axis/Angle

0 To convert a quaternions to a rotation axis, a (a,, a,, a,)
and an angle 6

scale = \/ X*+y>+2z> or sin(acos(W))

ax = / cale

ay = cale

_ 7
az Acale

6 = 2acos(W)

Quaternion Dot Product

0 The dot product of two quaternions works in the same
way as the dot product of two vectors.

P-q=XX, +Y,Y,+2,Z, +W W, =|p[q|cos¢

0 The angle between two quaternions in 4D space is half
the angle one would need to rotate from one
orientation to the other in 3D space.

Quaternion Multiplication

O If q represents a rotation and q' represents a rotation,
then qq’ represents q rotated by q'.

0O This follows very similar rules as matrix multiplication
(l.e.,, non-commutative). qq’' # q'q

qq’ = (Xi+yj+zk +w)X'i+y j+z'k+w')

= <SV’ +S'V+V'xv,s8 —v- V'>

Quaternion Operations

0o Negation of quaternion, -g
w -[vs] =[-v-s] =[X -y, -z —W]
o Addition of two quaternion, p + g
= p+q= [pv,ps]+I[qv, gs] = [pv +qv, ps + Qs]
0 Magnitude of quaternion, |q]
= \q\z\/x2+y2+zz+w2
o Conjugate of quaternion, g* (Z2l At =)
m QF=[vs]* =[-vs] =[x -y -z, W]
o Multiplicative inverse of quaternion, ' (Z2=)qq' =q'q =1
= q'=qY|q
0 Exponential of quaternion
= exp(vqg) =vsing + cos g
0 Logarithm of quaternion g =I[vsinq, cos g]
= log(q) = log(v sin g + cos q) = log(exp(v q)) = v g

Quaternion Interpolation

0 One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

alpha = fraction value in between frame0 and frameT
g1 = Euler2Quaternion(frame0)

g2 = Euler2Quaternion(frame1)

gr = Quaternioninterpolation(q1, g2, alpha)
gr.Quaternion2Euler()

0 Quaternion Interpolation

= Linear Interpolation (LERP)

= Spherical Linear Interpolation (SLERP)
= Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

o If we want to do a direct interpolation between two
quaternions p and g by t.

Lerp(qq, 92) = (1-1) g4 + (1) q;
where 0 <t <1

0 Note that the Lerp operation can be thought of as a
weighted average (convex).

O We could also write it in it's additive blend form : * O

Lerp(qy, g2 1) = g4 + t(g; — qy)

g1

Spherical Linear Interpolation (SLERP)

o If we want to interpolate between two points on a
sphere (or hypersphere), we will travel across the

surface of the sphere by following a ‘great arc.’
Sin (a—t)e) sin (t6)

sinf(1-1) sinct J Slerp(quqzjt) B s & 4 sin & L
sin ' sing

q(t)=

re 0 = ac:os(q1 -q2)

0 =cos™ (g, q,)

Spherical Cubic Interpolation (SQUAD)

0 To achieve C? continuity between curve segments, a
cubic interpolation must be done.

0O Squad does a cubic interpolation between four
quaternions by t.
Squad(q;,d;,,a,a.,,t)

= slerp(slerp(q;, ,...t), slerp(a;, a..,,1),2t(1 -t))

— —1 % -1 %
a; =G, *CXP(log(q; *;,) +log(Qi+1)j
4
— __1 *n _—1 *0q
ai+1 — qi+1 *GXP(log(q|+1 Q.)Zlog(qI+1 q|+2)j

= ai, ai+1 are inner quadrangle quaternions between g1 and g2.
And you have to choose carefully so that continuity is
guaranteed across se gments.

