
Buffer, Image, and
Texture Mapping

527970
Fall 2020

11/19/2020
Kyoung Shin Park

Computer Engineering
Dankook University

OpenGL Frame Buffer

 Color buffers
 Front buffer
 Back buffer
 Auxiliary buffer
 Overlay plane

 Depth buffer
 Accumulation buffer

 High resolution buffer

 Stencil buffer
 Holds masks

Writing in Buffers

frame buffer
(destination)

source
memory

 Conceptually, we consider all of memory as a large
two-dimensional array of pixels

 We read and write rectangular block of pixels
 Bit block transfer (bitblt) operations

 The frame buffer is part of this memory

writing into frame buffer

Buffer Selection

 OpenGL can draw into or read from any of the color
buffers (front, back, auxiliary)

 Default to the back buffer
 Change with glDrawBuffer and glReadBuffer
 Note that format of the pixels in the frame buffer is

different from that of processor memory and these two
types of memory reside in different places
 Need packing and unpacking
 Drawing and reading can be slow

Pixel Maps

 OpenGL works with rectangular arrays of pixels called
pixel maps or images

 Pixels are in one byte (8 bit) chunks
 Luminance (gray scale) images 1 byte/pixel
 RGB 3 bytes/pixel

 Three functions
 Draw pixels: processor memory to frame buffer
 Read pixels: frame buffer to processor memory
 Copy pixels: frame buffer to frame buffer

OpenGL Pixel Functions

glReadPixels(x,y,width,height,format,type,myimage)

start pixel in frame buffer size

type of image

type of pixels

pointer to processor
memory

GLubyte myimage[512][512][3];
glReadPixels(0,0, 512, 512, GL_RGB,

GL_UNSIGNED_BYTE, myimage);

glDrawPixels(width,height,format,type,myimage)

starts at raster position

OpenGL Buffer Management Functions

 Buffer clear
glClear(GLbitfield mask); // clear a specified buffer
GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |

GL_ACCUM_BUFFER_BIT | GL_STENCIL_BUFFER_BIT
glClearBuffer();

 Buffer clear value set
glClearColor(); glClearDepth(); glClearDepthf(); glClearStencil();

 Buffer mask (i.e., enabled or disabled)
glColorMask[i](GLboolean red, GLboolean green, GLbooleanblue,

GLboolean alpha); // set r,g,b,a color in frame buffer
glDepthMask(GLboolean flag); // set depth in depth buffer
glStencilMask(GLuint mask); // set bit mask in stencil buffer

Images

 Read image data from file or create the image data
 General image format:

 JPEG, TIFF, PNG, GIF, RGB, EPS, BMP, etc

 Image format:
 Color channel: greyscale, RGB, RGBA
 Bit resolution
 Compression: lossy coding, lossless coding

COIN3D simage

 http://www.coin3d.org/lib/simage
 COIN3D simage library support following image format

 JPEG, TIFF, PNG, PIC, TGA, EPS, GIF, RGB, etc

 To COIN3D simage library, need to add additional library
and include directory in your project
 Project -> Properties(ALT+F7) -> Configuration Properties ->

C/C++ -> General ->Additional Include Directories ->
add .\include

 Project -> Properties(ALT+F7) -> Configuration Properties ->
C/C++ -> Preprocessor -> Preprocessor Definitions
add ;SIMAGE_DLL

 Project -> Properties(ALT+F7) -> Configuration Properties -> Linker
-> General -> Additional Library Directories -> add .\lib\debug

 Project -> Properties(ALT+F7) -> Configuration Properties - >
Linker -> Input -> Additional Dependencies -> add simage1.lib

COIN3D simage Example
unsigned char *imgPtr;
unsigned char *imageData;
unsigned char *rescaledImageData;
int imageWidth = 0, imageHeight = 0, numComponents = 0;
imageData = simage_read_image (filename, &imageWidth,

&imageHeight, &numComponents); // read
GLsizei xdim2,ydim2; // if the image size is not the power of 2, resize it
GLenum type;
xdim2 = 1;
while (xdim2 <= imageWidth)

xdim2 *= 2;
xdim2 /= 2;
ydim2 = 1;
while (ydim2 <= imageHeight)

ydim2 *= 2;
ydim2 /= 2;
if ((imageWidth != xdim2) || (imageHeight != ydim2)) {

rescaledImageData = simage_resize(imageData, imageWidth, imageHeight,
numComponents, xdim2, ydim2);

imgPtr = rescaledImageData;
} else

imgPtr = imageData;

Texture Mapping

Wireframe Flat shading

Smooth shading Texture mapping

The Limits of Geometric Modeling

 Although graphics cards can render over 10 million
polygons per second, that number is insufficient for
many phenomena
 Clouds
 Grass
 Terrain
 Skin

 Texture Mapping
 Two-dimensional image is applied directly to a surface
 In real-time graphics rendering where a limited number of

polygons must be used, texture mapping is a technique
that can significantly increase the realism with a relatively
small additional cost.

Three Types of Mapping

 Texture Mapping
 Uses images to fill inside of polygons.

 Environment/Reflection mapping
 Uses a picture of environment for texture maps.

 Allows simulation of highly specular surfaces.

 Bump mapping
 Emulates altering normal vectors during the rendering process.

Texture Mapping

geometric model texture mapped

Environment Mapping

Bump Mapping

 Mapping techniques are implemented at the
end of the rendering pipeline
 Very efficient because few polygons make it past the

clipper

Where does texture mapping take place?

Is it simple?

 Although the idea is simple - map an image to a
surface.
 There are 3 or 4 coordinate systems involved

2D image

3D surface

Texture Mapping

 Conceptual 2D texture mapping process
 Surface parameterization

 How to apply a texture image to an object?
 The coordinates of the texture image mapped to each point of the

object are required. (x0, y0, z0) => (xt, yt)

 Geometric transformation
 Geometric transformation determines the mapping relationship

between each point of an object and its position on the projection
screen. (x0, y0, z0) => (xs, ys)

 Rasterization
 The process of finding pixels on which each geometric object is

projected

 Texture color calculation
 The process of painting each pixel with a texture color appropriately
 How to calculate the texture color visible through each pixel?
 How to blend the calculated texture color with the original color of

the object?

Coordinate Systems

 Parametric coordinates (u, v)
 May be used to model curves & surfaces

 Texture coordinates (s, t)
 Used to identify points in the image to be mapped

 Object or World Coordinates (x, y, z)
 Concepturally, where the mapping takes place

 Window Coordinates (xs, ys)
 Where the final image is really produced

Texture Mapping

Parametric coordinates

Texture coordinates

World coordinates
Window coordinates

Mapping Functions

 Basic problem is how to find the maps
 Consider mapping from texture coordinates to a point

a surface
 Appear to need three functions

x = x(s,t)
y = y(s,t)
z = z(s,t)

 But we really want to go the other way

s

t

(x,y,z)

s

t

(x,y,z)

Backward Mapping

 We really want to go backwards
 Given a pixel, we want to know to which point on an object it

corresponds
 Given a point on an object, we want to know to which point

in the texture it corresponds

 Need a map of the form
s = s(x,y,z)
t = t(x,y,z)

 Such functions are difficult to find in general

Two-part mapping

 Two-part mapping
 One solution to the mapping problem is to first map the

texture to a simple intermediate surface

 Example: first, map to cylinder

r

h

Cylindrical Mapping

 Parametric cylinder
x = r cos 2 u
y = r sin 2 u
z = v/h

 Maps rectangle in u,v space to cylinder of radius r and
height h in world coordinates
s = u
t = v

 Then, maps from texture space

u: (0,1)
v: (0,1)

x = r cos 2 s
y = r sin 2 s
z = t/h

Spherical Map

 We can use a parametric sphere
x = r cos 2u
y = r sin 2u cos 2v
z = r sin 2u sin 2v

 In a similar manner to the cylinder but have to decide
where to put the distortion
 Mercator projection creates the largest distortion at both poles.

 Spherical mapping is used in environmental maps.

x = r cos 2 s
y = r sin 2 s cos 2 t
z = r sin 2 s sin 2 t

Box Mapping

 Easy to use with simple orthographic projection
 Also used in environment maps

Second Mapping

 Map from intermediate object to actual object
 Normals from intermediate to actual
 Normals from actual to intermediate
 Vectors from center of intermediate

intermediate objectactual object

Second Mapping

 Put the object inside the mediation surface and apply
texture to the surface of the object.

Aliasing

 Point sampling of the texture can lead to aliasing
errors
 Point sampling – point to point mapping

point samples in u,v
(or x,y,z) space

point samples in texture space

miss blue stripes

Area Averaging

pixel

preimage

 A better but slower option is to use area averaging
 Area Averaging – area to area mapping

 Note: the preimage of pixel is curved

Basic Strategy

 Three steps to applying a texture
1. Specify the texture

 read or generate image
 assign to texture
 enable texturing

2. Assign texture coordinates to vertices
 Proper mapping function is left to application

3. Specify texture parameters
 wrapping
 filtering

Texture Mapping

s

t

x

y

z

image

geometry display

 Texture coordinates: T(s, t)
 s = f(x, y, z)
 t = g(x, y, z)

 Value:
 LUMINANCE, RGB, RGBA

OpenGL Texture Example

 The texture (below) is a 256 x 256
image that has been mapped to a
rectangular polygon which is
viewed in perspective.

256x256

s

t

Texture Mapping in the OpenGL Pipeline

 Images and geometry flow through separate pipelines
that join at the rasterizer
 “complex” textures do not affect geometric complexity

geometry pipeline정점

pixel pipeline이미지

rasterizer

vertices

images

Specifying a Texture Image in OpenGL

 Define a texture image from an array of texels (texture
elements) in CPU memory
 GLubyte imageData[512][512];

 Define as any other pixel map
 Scanned image
 Generate by application code

 Enable texture mapping
 glEnable(GL_TEXTURE_2D)
 OpenGL supports 1-4 dimensional texture maps

Define Image as a Texture

 glTexImage2D(target, level, components, width, height,
border, format, type, texels);
 target: texture type, e.g., GL_TEXTURE_2D
 level: mipmapping level
 components: texel components, e.g., RGB
 width, height: texel width and height (in pixels)
 border: used for smoothing
 format, type: texel format and type
 texels: texels pointer

glTexImage2D(GL_TEXTURE_2D, 0, RGB, imageWidth, imageHeight,
0, GL_RGB, GL_UNSIGNED_BYTE, imageData);

 OpenGL requires texture dimensions to be powers of 2
 64x64, 64x128, 512x512, …

 If dimensions of image are not powers of 2
 gluScaleImage(format, w_in, h_in, type_in, *data_in, w_out,

h_out, type_out, *data_out);
 data_in – the original image data
 data_out – the resized image data

 Image interpolated and filtered during scaling

Converting A Texture Image

 Based on parametric texture coordinates
 Texture coordinates must be specified for each vertex

s

t (1, 1)
(0, 1)

(0, 0) (1, 0)

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a Texture

Mapping a Texture

 Define texture coordinates per vertex
// Square Vertices Positions
squareVertices.push_back(glm::vec3(-0.75f, -0.75f, 0.0f));
squareVertices.push_back(glm::vec3(0.75f, -0.75f, 0.0f));
squareVertices.push_back(glm::vec3(0.75f, 0.75f, 0.0f));
squareVertices.push_back(glm::vec3(-0.75f, 0.75f, 0.0f));
// Square Vertices Texture Coordinates
squareTextureCoords.push_back(glm::vec2(0.0f, 0.0f));
squareTextureCoords.push_back(glm::vec2(1.0f, 0.0f));
squareTextureCoords.push_back(glm::vec2(1.0f, 1.0f));
squareTextureCoords.push_back(glm::vec2(0.0f, 1.0f));

 Note: use vertex array for code efficiency

Interpolation

good selection
of tex coordinates

poor selection
of tex coordinates

texture stretched
over trapezoid
showing effects of
bilinear interpolation

 OpenGL uses interpolation to find proper texels from
specified texture coordinates

 Can be distortions

Checkerboard texture mapping on a triangle Checkerboard texture
Mapping on a trapezoid

Texture Parameters

 OpenGL has a variety of parameters that determine
how texture is applied
 Wrapping – Wrapping parameters determine what happens if

s and t are outside the (0,1) range, e.g. CLAMP, REPEAT
 Filter modes – Filter modes allow us to use area averaging

instead of point samples
 Mipmapping – Mipmapping allows us to use textures at

multiple resolutions
 Environment parameters – Environment parameters determine

how texture mapping interacts with shading

texture

s

t

GL_CLAMP
wrapping

GL_REPEAT
wrapping

Wrapping Mode

 Clamp: adjustment of the value within the range (0, 1)
 If s and t are greater than 1, use 1
 If s and t are less than 0, use 0

 Repeat: repeat texture for values outside the range (0, 1)
 Use s %1 and t % 1
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_CLAMP)
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_T, GL_REPEAT)

Texture Polygon
Magnification Minification

PolygonTexture

Magnification and Minification

 More than one texel can cover a pixel (minification)
 More than one pixel can cover a texel (magnification)
 Can use point sampling (nearest) or linear filtering

 linear filtering – use the weighted average of texel groups
including neighbors of texels determined by point sampling

 nearest – use the nearest texel value to the value calculated by
line interpolation

Filter Modes

 Define min/mag filters
 glTexParameteri(target, type, mode)

 glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,
GL_NEAREST);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,
GL_LINEAR);

Note that linear filtering requires a border of an extra texel for
filtering at edges (border = 1)

Mipmapped Textures

 Mipmapping allows for prefiltered texture maps of
decreasing resolutions

 Lessens interpolation errors for smaller textured objects
 Declare mipmap level during texture definition

 glTexImage2D(GL_TEXTURE_*D, level, …)

 Automatically create mipmap textures
 glGenerateMipmap(GL_TEXTURE_2D)

 Use the following options to take advantage of optimal
mipmapping and point sampling in OpenGL
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST_MIPMAP_NEAREST)
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR)

Aliasing Example

point
sampling

mipmapped
point

sampling

mipmapped
linear
filtering

linear
filtering

Texture Environment

 Controls how texture is applied
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode);
 GL_TEXTURE_ENV_MODE modes:

 GL_MODULATE: modules with computed shade
 GL_DECAL: use only texture color
 GL_BLEND: blends with an environmental color
 GL_REPLACE: use only texture color

 GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE

 Set blend color with GL_TEXTURE_ENV_COLOR

Generating Texture Coordinates

 OpenGL can generate texture coordinates automatically
glTexGen{ifd}[v](GL_S/T, GL_TEXTURE_GEN_MODE, modes);
 Specify a plane – generate texture coordinates based upon

distance from the plane
 Generation modes:

 GL_OBJECT_LINEAR
 GL_EYE_LINEAR
 GL_SPHERE_MAP (used for environmental maps)

Glfloat planes[] = {0.5, 0.0, 0.0, 0.5} // s=x/2 + ½
Glfloat planet[] = {0.0, 0.5, 0.0, 0.5} // t=y/2 + ½
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_LINEAR, planes);
glTexGenfv(GL_T, GL_OBJECT_LINEAR, planet);

Texture Objects

 Texture is part of the OpenGL state
 If we have different textures for different objects, OpenGL will

be moving large amounts data from processor memory to
texture memory

 Recent versions of OpenGL have texture objects
 One image per texture object
 Texture memory can hold multiple texture objects

Environment Mapping

 Environment Maps
 Start with image of environment through a wide angle lens

 Can be either a real scanned image or an image created in
OpenGL

 Use this texture to generate a spherical map
 Use automatic texture coordinate generation
 Spherical environment mapping – Using automatic texture

coordinate generation after creating a spherical map from an
environment image taken with a 180 degree wide angle lens

Multitexturing

 Multitexturing
 Apply a sequence of textures through cascaded texture units

 Light Mapping
 Instead of calculating the light of the object surface, the

texture and bright image are mixed and the resulting image is
directly applied to the object surface

+

+ =

=

Reference

 https://www.glprogramming.com/red/chapter10.html
 https://www.khronos.org/opengl/wiki/Default_Framebuf

fer

