Geometric Objects
and Transformation

Fall 2021
10/5/2021
Kyoung Shin Park
Computer Engineering
Dankook University

3D Transformations

0O In general, three-dimensional transformation can be
thought of as an extension of two-dimensional
transformation.

0 The basic principles of three-dimensional translation,
scaling, shearing are the same as those of two-
dimensional.

0 However, three-dimensional rotation is a bit more
complicated.

3D Translation

X X' dx
. y LY dy
p=p+d p= p'={ .| d=
7 Z dz
1 1 |0
(1 0 0 dx] 1 0 0 —dx
0 1 0 0O 1 0 -
p'=Ip T= Y b
0O 0 1 d- 0 0 1 —d-
0 0 0 1 0 0 O 1

3D Scale

3D Shear

)" ¥ Shear along x axis}
(x, y) x', y)
0
Y . 7
X' =x+ycotO
y =y - .
2= cot 6

[
o = O O
_— 0 O O

3D Rotation

O 3D rotation in Z-axis

XI
y

I/

X COSO —y sind
X SinB + y coso
Z

\ram

A St
2 N
/AN
x5y 1Y\
TR,
iy e e
-
7
<&

X cos O

S = O O

3D Rotation

0o 3D rotation in X-axis
y' =y cosO — z sinf
Z' =y sind + z coso

—_— O O O

— N e R

3D Rotation

O

3D rotation in Y-axis
X' = X cos® + z sind
Z' = -xsin® + z cosO

y =Y

o P —
0 () = .
“_‘..' J‘l‘i D\ —
P | & sin O
S AL
A RN
o e / - —— o -
b= X

o O = O

sm O

cos O

_—o O O

— N e =

3D Rotation about the Origin

O A rotation by g about an arbitrary axis can be
decomposed into the concatenation of rotations

about the x, y, and z axes. ! |
R(0) = Rz(62)Ry(6y)Ry(6y)
0y, 6y, 6, are called the Euler angles. @/ * / *

Y

/v: X z z

4

g .

Rotation About a Pivot other than the
Origin

0 Move fixed point to origin, rotate, and then move fixed
point back.

o M = T(pg) Rz (6) T(-py)

cos® —sn® 0 x,—x,cos0+y,sinb

A — smO cosO 0 y,—x,smb&-y, cosd
0 0 1 0
0 0 0 1

-
*
T
—_—
A .
|
\.
T

3D Rotation about an Arbitrary Axis

O Move P, to the origin. y
O Rotate twice to align the A
arbitrary axis u with the Z-
axis.

O Rotate by O in Z-axis.

o Undo two rotations (undo
alignment).

0o Move back to P,,.

.
L
........

.......
““““
.

.

.
]

3D Rotation about an Arbitrary Axis

O The translation matrix, T(-P)

S = O O
|
<
=

oSO O
o O = O

3D Rotation about an Arbitrary Axis

O The rotation-axis vector y
= (X = X9, Yo = Y1, Z, — Z4)
O Normalize u:

ax
U
vV=—=|«
I

O Rotate along x-axis until v hits Xzz—p/ane

0 Rotate along y-axis until v hits z-axis

3D Rotation about an Arbitrary Axis

o Find 0, and 6,
v = (o, oy, a,) y

A
2 2 2 —
a,” + Qy, + a, =1
O Direction cosines: (@, a, a)
x“y Tz
Cos@. =0, ¢, &
cosgp, =a, N NP
27 (’bz
Cos@ =0,

cos’ @_+cos’ g, + cos’ @, =1

3D Rotation about an Arbitrary Axis

0 Compute x-rotation 6, y
1 0 0 0 ,x‘
o % % Cj;
Rx (ex) — d d (Oaa a,z’)l (aX’ ay' az)
o o
0o X =0 E
d d
0 0 0 1 > X

2 2
d:\/ay +a;

3D Rotation about an Arbitrary Axis

o Compute y-rotation 9, y
A
'd 0 —a 0]
R (0= o 1 0 0
7 e, 0 d 0 .
0 0 o0 1 »

— B X

. 2 2
d—\/ay +a;

Y

7 T y-=0f CHoto] AlA et

3D Rotation about an Arbitrary Axis

O Rotation about the z axis

(cosd -sind O
sin @ cosd 0
R6)=|" T
0

0 0

IIH'OOOI

o Undo alignment, RX(—GX)Ry (—Oy)
0 Undo translation, T(Py)

= B (PO)RX(_QX)Ry(_ﬁy)Rz(é)Rywy)Rxwx)T (_PO)

3D Rotation about an Arbitrary Axis
Using Rotation Vectors

0 3D rotation can be expressed as 4 numbers of one
angle of rotation about an arbitrary axis (ax, ay, az).

O It consists of a unit vector a (x, y, z) representing an
arbitrary axis of rotation and a value of 6 (0~360
degrees) representing the rotation angle around the
unit vector.

O 3D rotation vector

+Z

3D Rotation about an Arbitrary Axis

0o From axis/angle, we make the following rotation matrix.

R =TIcos@+Symmetric (1-cosd)+Skew sm &

0 0 a’

X

1
=0 1
0 0

Olcost+|a.a,
1 a.a.

a: +cosf(l-a’)

=| a,a,(1-cosf)+a,smn 6

a.a, a.a,
2
a, aga,
2
aa a

y 'z z

(I-cos@)+

0 -a, aq,
a, 0 —a_|smf
-a, a, 0

a.a,(l-cosf)—a,sm8 aa, (l-cosd)+a sm 0

2 2
a, +cost(l1-ay)

a.a,(l-cost)—a,sm6 aa,(1-cosf)+a snd

a,a,(l-cosf)—a,sm 6

a’ +cosf(l-a’)

3D Rotation as Vector Components

0 3D rotation by 0 around the arbitrary axis a =[a,, a, a,]

'-'1;_ c:x_ X
S}*mmctri{ a, }(lcnsﬁﬁﬂkcw{ a, }sinﬁ+1cnsﬂ ¥

3D Rotation as Vector Components

=i (@-Z)a+ cosf(z — (a- x)a) + sin Gw
= cosOZ+ (1 —cosb)(d-z)a+sind(@xz) i

3D Rotation as Vector Components

Ir _{I};_ —{I};— _I_
¥ |=| Symmetric| |z, | (1-cos0)+Skew| | a, | [sinB+IcosB
|z | a, | | @, | | Z |

O The vector a specifies the axis of rotation. This axis
vector must be normalized.

0 The rotation angle is given by 6.

O The basic idea Is that any rotation can be decomposed

into weighted contributions from three different
vectors.

3D Rotation as Vector Components

O 7he symmetric matrix of a vector generates a vector in
the direction of the axis.

0 The symmetric matrix is composed of the outer
product of a row vector and an column vector of the
same value.

MTa,]\ [a, a, aa, aa,

Symmetric| | a, | |=| a, [ax a, az] =|aa, a, aa,
a. | |a.] aa, aa, a; |
(Ma.]\ x|

Symmetric| | a

-
1
EL
<Y
=
S’

3D Rotation as Vector Components

O Skew symmetric matrix of a vector generates a vector
that is perpendicular to both the axis and it's input

vector.
(T~ T 0

a. —a, a,
Skew| [a, | |=]| a, 0 -a,
\L4: 1) |74, 4 0

3D Rotation as Vector Components

O First, consider a rotation by 0. :

Rotate

L

fr - B

= £

(1-

1+

0+

0

0

O For instance, a rotation about the x-axis:

Rotate

T o ™

1
0

0_

.0

A

1 0 O]

0

0 0 0]

0

Rotate

0

(1-cost)+
M1 Y N
01.61=10
k-O- / -0

[0 0
0 0

0 1
0

cos

sin

0

-1

0-
0

—sinf

cosfl

sin 0 +

1
0

0
1

0 0 1

o]
0

1 0 0]

1
0

cos

0

l_.

1 0 0]

0 0 1]

3D Rotation as Vector Components

O For instance, a rotation about the y-axis:
o]) [0 0 O] (0 0 1] (1 0 0]

Rotate||11,0(=]10 1 0fjQ1-cos@)+| 0 0 Olsinf+|0 1 Ofcosf

o] | lo o o -1 00/ oo 1
101 Y [cosf 0O sin6]

Rotate||1].0|=| O 1 0

0 _—sinﬂ 0 cosﬂ_

WL /

O For instance, a rotation about the z-axis:
o]l Y [o 0 0O 0 -1 0] (1 0 0]

Rotate[|0 L6 |=]10 0 Of1-=cos)+|1 0 Ofsinf@+|0 1 O]|cosf

1] J o o 1 0 0 0 0 0 1

Mol) [cos® —sinf 0]

Rotate|| 0.0 |=]|sinf! cosf@ 0

1 0 0 1]

Quaternion

0 Quaternion is a 4D complex space vector. It is a
mathematical concept used in place of a matrix when
expressing 3D rotation in computer graphics.

O It is actually the most effective way to express rotation.
0 Quaternion has four components.

q=<x y z W>

Quaternions (Imaginary Space)

0 Quaternions are actually an extension to complex
numbers.

o Of the 4 components, one is a ‘real’ scalar number,
and the other 3 form a vector in imaginary //k space!

q=xi+y+zk+w

Quaternion (Scalar/Vector)

O The quaternion is also expressed as a scalar value s
and a vector value v.

q=(v.s)

v=(x,y,z)
=W

Identity Quaternion

O Unlike vectors, there are two identity quaternions.
0 The multiplication identity quaternion is

q=1{0,0,0,1)=0i+0, + 0k +1

O The addition identity quaternion (which we do not use)
IS

q =(0,0,0,0)

Unit Quaternion

O For convenience, we will use only unit length
quaternions, as they will make things a little easier

\q\:\/x2 +y*+z22+w =1
0 These correspond to the set of vectors that form the

'surface’ of a 4D hyper-sphere of radius 1

0 The ‘surface’ is actually a 3D volume in 4D space, but
It can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

O Quaternion normalization:
_q9/ _ q
|Q‘ \/x2+y2 +zi 4w

Quaternion as Rotations

O A quaternion can represent a rotation by an angle q
around a unit axis a (a,, a,, a,) :
. 0 . 0 .0 0
q=|a,sm—, a,sm—, a,sm—, COS—
2 2 2 2

or

{ .6 9}
q=|asm —, COS—
2 2

O If a has unit length, then g will also has unit length

Quaternion as Rotations

‘q‘:\/x2+y2+22+w2

a. sin —+a sin > —+aZ sin* —+¢os” —
2 2 2 2

\/sng(a +a; +a:)+0082Q
2 2

\/.29) , 6 \/ , 6 , 6
SN 5‘a| + COS 52 srn —+COS —

2 2
J1=1

\/ , 0 , 0 ,0 6

Quaternion to Rotation Matrix

0o Equivalent rotation matrix representing a quaternion is:

X2 - y =z +w’ 2xy—2wz 2xz+2wy
2xy+2wz —x*+y =z +w 2yz —2wx
2xz—2wy 2yz+2wx — X =y 4z +w

0 Using unit quaternion that x2+y2+z°+w?=1, we can
reduce the matrix to:

_1—2y2 —2z° 2xy—2wz 2xXz+ 2wy
2xy+2wz 1-2x" -2z 2yz —2wx

2xz—=2wy 2yz +2wx 1-2x"=2y°

Quaternion to Axis/Angle

O To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle 6 :

scale = \/x2 +y°+z° or sin(acos(w))

scale

_y
="/ scale

z = 7
scale

0 = 2acos(w)

Quaternion Dot Product

0 The dot product of two quaternions works in the same
way as the dot product of two vectors:

P-q= xpxq -I-ypyq -I-Zqu -I-Wqu = ‘qu‘ COS @

0 The angle between two quaternions in 4D space is half
the angle one would need to rotate from one
orientation to the other in 3D space.

Quaternion Multiplication

O If q represents a rotation and q' represents a rotation,
then qq’ represents q rotated by ¢’

0o This follows very similar rules as matrix multiplication
(l.e.,, non-commutative) qq’ # g'q

qq = (xz'+yj+zk+w)(x'i+y'j+z'k+w')

= (sv' +sV+VXV, 55 — V- V')

Quaternion Operations

O

O

O

O

O

O

Negation of quaternion, -g

m -[vs] = [-v=s] = [-%x, ~Yy, -z —W]

Addition of two quaternion, p + g

= p+q= [pv,ps] +Iqv, gs] =[pv + qv, ps + gs]
Magnitude of quaternion, [q]

= ‘q’:\/x2+yz+zz+w2

Conjugate of quaternion, g* (Z2{ At&=)
mgq*=[vs]* = [-vs] = [% -y, -z, W]
Multiplicative inverse of quaternion, ' (Z4<)qq' = q' q =1
= q'=gq

Exponential of quaternion

= exp(vqg) =vsing + cos g

Logarithm of quaternion

= log(qg) = log(v sin g + cos q) = log(exp(v q)) = v g

Quaternion Interpolation

0 One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

alpha = fraction value in between frame0 and frameT
g1 = Euler2Quaternion(frame0)

g2 = Euler2Quaternion(frame1)

gr = Quaternioninterpolation(q1, g2, alpha)
gr.Quaternion2Euler()

0 Quaternion Interpolation

= Linear Interpolation (LERP)

= Spherical Linear Interpolation (SLERP)
= Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

o If we want to do a direct interpolation between two
quaternions p and q by alpha:

Lerp(p, q, 1) = (1-)p + ()q
where 0 £t <1

0 Note that the Lerp operation can be thought of as a
weighted average (convex) 92

O We could also write it in it's additive blend form:

Lerp(Qy, Gz 1) = G + t(d, — &) ot

q4

Spherical Linear Interpolation (SLERP)

o If we want to interpolate between two points on a
sphere (or hypersphere), we will travel across the

surface of the sphere by following a ‘great arc.’
sin((1-7)9) sin(t0)
J Slerp(q,,q,.1) = : q, +— q,
sm & sm &
re 6 = acos(q1 -q2)

sind(1-t) sin &
-) +— 2
sin@ sin@

q(t) =

0= Cosil(ql °q,)

Spherical Cubic Interpolation (SQUAD)

0 To achieve C? continuity between curve segments, a
cubic interpolation must be done.

0 Squad does a cubic interpolation between four
quaternions by t

Squad(%a%ﬂaawam»o

= slerp(slerp (g, G, 1), slerp(a, a,,,1),2(1- 1))

—log(q,-_l *q,.,)+log(Qi_l * Qi+1)]
4

d; =(, *exp{

.—10g(q:l * q,) + 1Og(QI_—O—ll ¥ QHZ)]

ar’+1 — Qi+1 * ex‘:p{ 4

® a, a,, are inner quadrangle quaternions between g1 and g2.
And you have to choose carefully so that continuity is
auaranteed across seaments.

