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Orientation

 We will define orientation to mean an object’s
instantaneous rotational configuration.

 Think of it as the rotational equivalent of position
 Direction

 Vector has a direction but not orientation

 Rotation
 An orientation is given by a rotation from identity orientation

 Angular Displacement
 The amount of rotation is angular displacement



Representing Orientations

 Is there a simple means of representing a 3D 
orientation (analogous to Cartesian coordinates)?
 Not really

 There are several popular options though:
 Euler angles – the simplest
 Rotation vectors (axis/angle)
 Rotation matrices
 Quaternions
 etc..



Euler Angles

 Euler Angles
 Represent any arbitrary orientation as three rotations about 

three mutually perpendicular axes (rotation about X, Y, Z)
 Sometimes described as “Yaw, Pitch, Roll” or similar
 A sequence of rotations around principle axes is called an Euler 

Angle Sequence

 Axis order
 Euler angles represent three composed rotations that move a 

reference frame to a given referred frame.
 Euler angles are used in a lot of applications, but they tend to 

require some rather arbitrary decisions.
 (y, x, z), (x, y, z), (z, x, y),  … can be used

XYZ XZY XYX XZX
YXZ YZX YXY YZY
ZXY ZYX ZXZ ZYZ



Euler Angles

 Yaw, Pitch, Roll
 Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is 

used in computer graphics.



Euler Angles to Matrix Conversion

 Any orientation can be achieved by composing three 
elemental rotations
 i.e., Any rotation matrix can be decomposed as a product of 

three elemental rotation matrices.



Euler Angle Order

 As matrix multiplication is not commutative, The order 
of operations is important.

 Rotations are assumed to be relative to fixed world axes, 
rather than local to the object.

 One can think of them as being local to the object if 
the sequence order is reversed.

 Euler angle can be used differently by applications.
 XYZ convention is widely used in 3D graphics
 ZXZ convention is used in rigid-body dynamics



Euler Angle Order

 ZXZ convention
 XYZ (fixed) system is shown in blue.
 XYZ (rotated) system is shown in red.
 The line of nodes, N, is shown in green.
 (Z-rotation) Rotate about the Z-axis by . 

 The X-axis now lies on the line of nodes, N

 (X-rotation) Rotate again about the rotated X-axis 
(i.e., N) by .
 The Z-axis is now in its final orientation, and the X-

axis remains on the line of nodes

 (Z-rotation) Rotate a third time about the new Z-
axis by .



Vehicle Orientation Using Euler Angles

 Generally, for vehicles, it is convenient to rotate in roll 
(z), pitch (x) and then yaw (y) order.

 In situations where there is a definite ground plane, 
Euler angles can actually be an intuitive representation. 

front of vehicle

+x

+y

z



Rotations not uniquely defined with 
Euler Angles

 Rotations are not uniquely defined with Euler Angles.
 Cartesian coordinates are independent of each other.

 Arbitrary position = x-axis position + y-axis position + z-axis 
position

 Euler angles do not act independently of each other. 
 Arbitrary orientation = x-axis rotation matrix * y-axis rotation 

matrix * z-axis rotation matrix
 For example, (z, x, y) = (90, 45, 45) = (45, 0, -45)



Gimbal Lock

 One potential problem is ‘gimbal lock’.
 ‘Gimbal Lock’ results when two axes effectively line up, 

resulting in a temporary loss of a degree of freedom. 
Change to one of the angles affect to the entire system.
 This is related to the singularities in longitude that you get at the 

north and south poles.
 Rotate 30 about X, then rotate 90 about Y. The current Z-axis is 

in line with X0-axis. This is what we call ‘gimbal lock’ situation.
 Any further rotation about the Z-axis affects the same degree of 

freedom as rotating about the X-axis – losing the third DOF.



Gimbal Lock

 https://www.youtube.com/watch?v=zc8b2Jo7mno



Problem with Interpolating Euler Angles

Halfway between 
(0,0,0) and (0,180,0)

Halfway between 
(0,0, 0) and (180,0, 180)

 The second problem is with generating the in-between 
frames, due to the fact that the Euler angles do not act 
independently of each other.

 Let say you have the object with (0,180,0) of rotation 
angles, and the next keyframe rotation angles is in (0,0,0)
 (180,0,180) represents the same orientation of (0,180,0) 
 But, the halfway between (0,180,0) and (0,0,0) is not same 

orientation of the halfway between (180,0,180) and (0,0,0)



Euler Angles

 Euler angles are used in a lot of applications, but they 
tend to require some rather arbitrary decisions.

 They also do not interpolate in a consistent way (but 
this isn’t always bad).

 They can suffer from Gimbal lock and related 
problems.

 There is no simple way to concatenate rotations.
 Conversion to/from a matrix requires several 

trigonometry operations.
 They are compact (requiring only 3 numbers).



glm::yawPitchRoll 

 glm::yawPitchRoll

// Yaw/Pitch/Roll -> Rotation Matrix
glm::yawPitchRoll(yaw, pitch, roll) ;

float yaw, // by y-axis (in radians)
float pitch, // by x-axis (in radians)
float roll // by z-axis (in radians)



glm::rotate 

 glm::yawPitchRoll vs. glm::rotate (X/Y/Z)
 YawPitchRoll – rotations in local coordinate system
 Rotate (X/Y/Z) multiplication – rotations in world coordinate 

system

glm::mat4 R1, R2, Rx, Ry, Rz;
Ry = glm::rotate(glm::mat4(1), 60, glm::vec3(0, 1, 0));
Rx = glm::rotate(glm::mat4(1), 30, glm::vec3(1, 0, 0));
Rz = glm::rotate(glm::mat4(1), 45, glm::vec3(0, 0, 1));
R1 = Rz * Rx * Ry;

R2 = glm::yawPitchRoll(60, 30, 45);

R1 != R2



YawPitchRoll vs. RotationX/Y/Z 

R1 = Y-axis rotation 60 R2 = Yaw 60 

Z

X

Y



YawPitchRoll vs. RotationX/Y/Z 

R1 = X-axis rotation 30
* Y-axis rotation 60

R2 = Yaw 60
Pitch 30 

Z

X

Y



YawPitchRoll vs. RotationX/Y/Z 

R1 = Z-axis rotation 45
* X-axis rotation 30
* Y-axis rotation 60

R2 = Yaw 60
Pitch 30
Roll 45 

Z

X
Y



Rotation Vectors and Axis/Angle

 Euler’s Theorem also shows that any two orientations 
can be related by a single rotation about some axis 
(not necessarily a principle axis).

 This means that we can represent an arbitrary 
orientation as a rotation about some unit axis by some 
angle (4 numbers) (Axis/Angle form).

 Alternately, we can scale the axis by the angle and 
compact it down to a single 3D vector (Rotation 
vector).



Axis/Angle to Matrix

 To generate a matrix as a rotation  around an arbitrary 
unit axis a:

glm::vec3 axis(0, 1, 0);
float angle = glm::radians(60);
glm::mat4 R = glm::rotate(glm::mat4(1), angle, axis);



Rotation Vectors

 To convert a scaled rotation vector to a matrix, one 
would have to extract the magnitude out of it and then 
rotate around the normalized axis

 Normally, rotation vector format is more useful for 
representing angular velocities and angular 
accelerations, rather than angular position (orientation)



Axis/Angle Representation

 Storing an orientation as an axis and an angle uses 4 
numbers, but Euler’s theorem says that we only need 3 
numbers to represent an orientation

 Mathematically, this means that we are using 4 degrees 
of freedom to represent a 3 degrees of freedom value

 This implies that there is possibly extra or redundant 
information in the axis/angle format

 The redundancy manifests itself in the magnitude of 
the axis vector. The magnitude carries no information, 
and so it is redundant. To remove the redundancy, we 
choose to normalize the axis, thus constraining the 
extra degree of freedom



Matrix Representation

 We can use a 3x3 matrix to represent an orientation as 
well.

 This means we now have 9 numbers instead of 3, and 
therefore, we have 6 extra degrees of freedom.

 NOTE: We don’t use 4x4 matrices here, as those are 
mainly useful because they give us the ability to 
combine translations. We will just think of 3x3 matrices.



Matrix Representation

 Those extra 6 DOFs manifest themselves as 3 scales (x, 
y, and z) and 3 shears (xy, xz, and yz)

 If we assume the matrix represents a rigid transform 
(orthonormal), then we can constrain the extra 6 DOFs



Matrix Representation

 Matrices are usually the most computationally efficient 
way to apply rotations to geometric data, and so most 
orientation representations ultimately need to be 
converted into a matrix in order to do anything useful.

 Why then, shouldn’t we just always use matrices?
 Numerical issues
 Storage issues
 User interaction issues
 Interpolation issues



Quaternions

 Quaternions are an interesting mathematical concept 
with a deep relationship with the foundations of 
algebra and number theory

 Invented by W.R.Hamilton in 1843
 In practice, they are most useful as a means of 

representing orientations
 A quaternion has 4 components



Quaternions (Imaginary Space)

 Quaternions are actually an extension to complex 
numbers.

 Of the 4 components, one is a ‘real’ scalar number, 
and the other 3 form a vector in imaginary ijk space!



Quaternion (Scalar/Vector)

 Quaternions are written as the combination of a scalar 
value s and a vector value v, where



Identity Quaternion

 Unlike vectors, there are two identity quaternions.
 The multiplication identity quaternion is

 The addition identity quaternion (which we do not use) 
is



Unit Quaternion

 For convenience, we will use only unit length 
quaternions, as they will make things a little easier

 These correspond to the set of vectors that form the 
‘surface’ of a 4D hyper-sphere of radius 1

 The ‘surface’ is actually a 3D volume in 4D space, but 
it can sometimes be visualized as an extension to the 
concept of a 2D surface on a 3D sphere

 Quaternion normalization:



Quaternion as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a (ax, ay, az) :

 If a has unit length, then q will also has unit length



Quaternions as Rotations



Quaternion to Rotation Matrix

 Equivalent rotation matrix representing a quaternion is:

 Using unit quaternion that x2+y2+z2+w2=1, we can 
reduce the matrix to:



Quaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az) 
and an angle 



Matrix to Quaternion

 To convert a matrix to a quaternion:

 If w=0, then the division is undefined. First, 
determining which q0, q1,q2, q3 is the largest, 
computing that component using the diagonal of the 
matrix.



Quaternion Dot Product

 The dot product of two quaternions works in the same 
way as the dot product of two vectors:

 The angle between two quaternions in 4D space is half 
the angle one would need to rotate from one 
orientation to the other in 3D space.



Quaternion Multiplication

 If q represents a rotation and q’ represents a rotation, 
then qq’ represents q rotated by q’

 This follows very similar rules as matrix multiplication 
(I.e., non-commutative) qq’ ≠ q’q



Quaternion Multiplication

 Note that two unit quaternions multiplied together will 
result in another unit quaternion

 This corresponds to the same property of complex 
numbers

 Remember that multiplication by complex numbers can 
be thought of as a rotation in the complex plane

 Quaternions extend the planar rotations of complex 
numbers to 3D rotations in space



Quaternion Operations

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q =  [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|


 Conjugate of quaternion, q* (켤레 사원수)
 q* = [v s]* = [–v s] = [–x, –y, –z , w] 

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q| 

 Exponential of quaternion
 exp(v q) = v sin q + cos q

 Logarithm of quaternion
 log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

q = [v sin q , cos q]

q q-1 = q-1 q = 1



glm::quaternion 

 // rotation matrix (4x4) -> quaternion
glm::quat quat1 = glm::quat_cast(matrix1);
 // axis/angle -> quaternion
glm::quat quat1 = glm::axisAngle((float)M_PI/2.0, flm::vec3(0, 1, 0));
 // quaternion -> Euler angle (yaw/pitch/roll)
glm::vec3 euler = glm::eulerAngles(quat1); // XYZ
float yaw = glm::yaw(quat1); // Y
float pitch = glm::pitch(quat1); // X

Float roll = glm::roll(quat1); // Z
 // quaternion -> rotation matrix (4x4)
glm::mat4 R = glm::mat4_cast(quat1);
 // rotate a vector by a quaternion
glm::vec4 vec = glm::rotate(quat1, glm::vec4(1, 2, 3, 1));
 // rotate a quaternion by axis/angle
glm::quat q = glm::rotate(quat1, (float)M_PI/2.0, glm::vec3(0, 1, 0));



Quaternion Interpolation

 One of the key benefits of using a quaternion 
representation is the ability to interpolate between key 
frames.

alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)
 Spherical Linear Interpolation (SLERP)
 Spherical Cubic Interpolation (SQUAD)



Linear Interpolation (LERP)

 If we want to do a direct interpolation between two 
quaternions p and q by alpha:

Lerp(p, q, t) = (1-t)p + (t)q
where 0 ≤ t  ≤ 1

 Note that the Lerp operation can be thought of as a 
weighted average (convex)

 We could also write it in it’s additive blend form:

Lerp(q1, q2, t) = q1 + t(q2 – q1)

q1

q2

0 ≤ t ≤ 1



Why SLERP?

 The set of quaternions live on the unit hypersphere. 
The direct interpolation between quaternions would 
stray from the hypersphere.

 An illustration in the plane of the difference between 
Lerp and Slerp 
 The interpolation covers the angle v in three steps
 [Lerp] The secant across is split in four equal pieces The 

corresponding angles are shown
 [Slerp] The angle is split in four equal angles



Spherical Linear Interpolation (SLERP)

 If we want to interpolate between two points on a 
sphere (or hypersphere), we will travel across the 
surface of the sphere by following a ‘great arc.’



Spherical Linear Interpolation

 Remember that there are two redundant vectors in 
quaternion space for every unique orientation in 3D 
space

 What is the difference between:
Slerp(p, q, t) and  Slerp(-p, q, t) ?

 One of these will travel less than 90 degrees while the other 
will travel more than 90 degrees across the sphere

 This corresponds to rotating the ‘short way’ or the ‘long way’
 Usually, we want to take the short way, so we negate one of 

them if their dot product is < 0



Why SQUAD?

 Slerp produces smooth interpolation, but it always 
follows a great arc connecting two quaternions – i.e. the 
animations change directions abruptly at the control 
points. To smoothly interpolate through a series of 
quaternions, use splines.

Linear Interpolation

Spline Interpolation



Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a 
cubic interpolation must be done.

 Squad does a cubic interpolation between four 
quaternions by t

 ai, ai+1 are inner quadrangle quaternions between q1 and q2. And 
you have to choose carefully so that continuity is guaranteed 
across segments.



glm::quaternion 

 // slerp(q1, q2, t) spherical linear interpolation between 
two quaternions, q1, q2 according to t
glm::quat quat3 = glm::mix(quat1, quat2, alpha);

 // squad(q1, q2, s1, s2,t) spherical cubic interpolation
glm::quat quat3 = glm::squad(quat1, quat2, s1, s2, 
alpha);



Catmull-Rom Spline Interpolation

 Given n+1 control points {P0, P1, .. Pn}, you wish to find 
a curve that interpolates these control points (and 
passes through them all), and is local in nature (i.e. if 
one of the control points is moved, it only affects the 
curve locally) – Catmull-Rom Spline. 

 The Catmull-Rom Spline takes a set of keyframe points 
to describe a smooth piecewise cubic curve that 
passes through all the points. In order to use this 
routine we need four keyframe points. 

 Given four keyframe points, P0, P1, P2, P3, the curve 
passes through P1 at t=0 and it passes through P2 at 
t=1 (0 < t < 1).

 The tangent vector at a point P is parallel to the line 
joining P’s two surrounding points.



Catmull-Rom Spline Interpolation 

 // Catmull Rom Spline Interpolation
glm::vec3 position = glm::catmullRom(vec1, vec2, vec3, 
vec4, alpha); 



Path Animation


