Viewing

Fall 2021
11/02/2021
Kyoung Shin Park
Computer Engineering
Dankook University

Viewing

o Viewing requires basic elements
= One or more objects
m A viewer with a projection surface

= Projectors that go from the objects to t@. =
projection plane | Projection plane

o COP vs DOP &
m Center Of Projection (COP)
— Perspective views
= Direction Of Projection (DOP)
— Parallel views

Proieclor«-_

Object

Projector

DoP

Projection p lane

Classical Viewing

Classical Viewing

m

Plan oblique

lsometric One-point perspective Three-point perspective

Planar
projections

Parallel Perspective

N IS

Oblique Orthographic T-point 2-point 3-point

mher /\
Cavalier Cabinet Axonometric Multiview
/Nthographic

Isometric Dimetric Trimetric

Parallel Viewing

Perspective Viewing

' Object

\Projector

DOP

(Direction
of Projection) /

Projection plane

Pro]ector\

Projection plane

GOP

Orthographic Projection

Multiview Orthographic Projection

o In the orthographic projection, projectors are orthogonal
to projection plane.

o In the multiview orthographic projection, projection
plane parallel to principal face.

0 Usually form front, top, side views.

Isometric (not multiview
orthographic view)

In CAD and architecture,
we often display three
multiviews plus isometric

Multiview Orthographic Projection
Advantages and Disadvantages

Axonometric Projections

O Preserves both distances and angles
= Shapes preserved
m Can be used for measurements
Building plans
Manuals
o Cannot see what object really looks like because many
surfaces hidden from view
m Often we add the isometric

o Axonometric projections allow projection plane to

move relative to object.

classify by how many angles of
a corner of a projected cube are
the same

none: trimetric
two: dimetric

~ 9243 -
three: isometric g

Projection plane

Construction of an Axonometric
Projection

Types of Axonometric Projections

11y 1 3

Projection plane Projection plane Projection plane

(a) (b) (c)

Figure 5.6 (a) Construction of an axonometric projection. (b) Top view. (c) Side view

Dimetric Trimetric

Isometric

Axonometric Projections
Advantages and Disadvantages

Oblique Projection

O Lines are scaled (foreshortened) but can find scaling
factors
O Lines preserved but angles are not

m Projection of a circle in a plane not parallel to the projection
plane is an ellipse

o Can see three principal faces of a box-like object
o Some optical illusions possible
m Parallel lines appear to diverge

o Does not look real because far objects are scaled the
same as near objects

o Used in CAD applications

o Arbitrary relationship between projectors and
projection plane

Projection plane -

—— %
B
|
"
\
\
I ——
\ \

kY Ry EY e —— "Wy

Projection plane 4 Projection plane
ZA S0 BEE 8 SWE

Oblique Projection
Advantages and Disadvantages

Perspective Projection

o Can pick the angles to emphasize a particular face
m Architecture: plan oblique, elevation oblique

o Angles in faces parallel to projection plane are preserved
while we can still see “around” side

O In physical world, cannot create with simple camera;
possible with bellows camera or special lens
(architectural)

o Parallel lines (not parallel to the projection plan) on the
object converge at a single point in the projection (the
vanishing poini)

o Drawing simple perspectives by hand uses these
vanishing point(s) /

1-,2-,3-Point Perspective

Perspective Projections
Advantages and Disadvantages

O Three-point perspectives — no principal face parallel to
projection plane, 3 vanishing points.
o Two-point perspectives — on principal direction parallel
to projection plane, 2 vanishing points.
o One-point perspective — one principal face parallel to
rojection.plane, 1 vamishing point.

3-point perspective 2-point perspective 1-point perspective

O Objects further from viewer are projected smaller than
the same sized objects closer to the viewer
(diminution)

m Looks realistic

o Equal distances along a line are not projected into

equal distances (nonuniform foreshortening)

O Angles preserved only in planes parallel to the
projection plane

o More difficult to construct by hand than parallel
projections (but not more difficult by computer)

Orthographic Projection

Perspective Projection

o Orthographic projection projects the rectilinear box
viewing volume onto the screen.

O The size of the object does not change with distance.

Viewing

O Perspective projection projects the frustum (i.e,
truncated pyramid) viewing space onto the screen.

O Near objects appear larger, and object far away
appear smaller.

Viewing

OpenGL Orthographic Projection

O glm:ortho(left, right, bottom, top, near, far)
m The parameters of this function are the same as those of
glm:frustum.
= The viewing volume is rectilinear box.

= Near and far take only positive numbers. It is used by
changing it to a negative number inside.

Y [right, top, —far)

z=—far

~View volume

Z = =near

X
(left, bottom, —near)

OpenGL Perspective Projection

o In OpenGL perspective projection, the camera is
positioned at the origin and is looking at the —Z-axis.
o glm:frustum(left, right, bottom, top, near, far)

= The distance between near and far must be positive and is
measured as the distance from the CPO to the near/far plane.

= The viewing volume is frustum (i.e., truncated pyramid).

View volume |

Y z=-far
Zz = —near .
1 s
[right, top, —near)
_ bock
(left, botiom, ~near) o L ey

View clipping
plane plane

OpenGL Perspective Projection

o glm:perspective(fovy, aspect, near, far)
fovy — angle of field of view in Y-axis direction
aspect — the aspect ratio (width divided by height)
near — near clipping plane

far — far clipping plane

Projection = glm:perspective(45, aspect, 0.1, 100);
y

far coP ><fov

e | aspect = w/h

Orthographic Projection

o Orthographic projection
= Special case of parallel projection in which the projector is
orthogonal to the projection plane. _

= The focal length is infinite. 1 000
' o M {010
Orthographic projection othe =)y 0 0 0
0 0 0 1
x ™
M
Y| 3™ g y
z 0
1 |1

Perspective Projection

Perspective Projection

O Perspective projection
m Center of projection is located at the origin
= Projection plane z, = d

Perspective projection - -

10 0 0
x=_X_ Mpers = 01 0 0
z/d 00 1 0
=y 00 0
Zld - __%’ -
_ _Z X X
»=9= 74 M
Y| M= |V
q=Mp P= = 4q=
z A
Z
n 7]

Projection Normalization

Orthogonal Projection Matrix

O Projection normalization converts all projections into
orthogonal projections by distorting the objects such
that the orthogonal projection of the distorted object
is the same as the desired projection of the original

object. 7 7‘
L l /
Distort - Orthggrqphic .
(normalize) projection

o Orthogonal projection maps a rectilinear view volume
to Canonical view volume.

K Rectilinear -> Cube

{r. b n)

(1,-1,-1}

Orthogonal Projection Matrix

Orthogonal Projection Matrix

O Translate the center of viewing volume to the origin

T((right+left) (top+bottom) _(—fﬂr+(—mm‘)))
z 2 2

O Scale the viewing volume so that its length is 2x2x2

S 2 2 2
((right-!eft) (top—bottom) (—far—(—near))

T 2 (right + left)
Ly (= 0 0 ~right —lefo)
0 2 0 _ (top + bottom)
(top — botiom) (top — bottom)
0 0 2 {far + near)
{far — near) {far — near)
0 0

Ortho=ST

2 right + left
(right — lefD) 0 0 0 1 0 0 _%
2 (top + hottom)
) (top — bottom) 2 olfo 1 0 - 2
g g _ 2 0 0 1 (far + near)
(far — near) 2
0 0 0 1 0 0 0 1
- 2 0 0 N (rtnght + left)
(right — left) (right — left)
2 0 _ (top + bottom)
(top — bottom) (top — bottom)
2 (far + near)
0 0 - (far — near) - (far — near)
0 0

Orthogonal Projection Matrix

Oblique Projection Matrix

template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
(T left, T right, T bottom, T top, T zNear, T zFar) {

tmat4x4<T, defaultp> Result(1);

Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);

return Result;

¢
A

Back clipping plane R
Object Oblique -> Orthogonal

N
\

Front clipping plane

Projection plane

DOP

-

{x, z}

’ ZR o _z . .

_ XS N =4 side view
top view lxp-m\‘ vy -
tan f=—2 = ’

X-X, to.y y=¥
= ! I & ¥, =y—zcotp
x,=x—zcotf

Oblique Projection Matrix

O xy shear (z values unchanged)

1 0 —cotd O
H©o.$) = |0 —cote O f

1
00 1 0 .ﬂ
00 0 1 X

oP= Mortho H(9,(|>) v/ h

0 General case: P = Mortm@ H(6,0)

Perspective Projection Matrix

f (’//)
P z = -far
i
S
' 7 (1,1,-1)
o
——Projection plane at z = -1

- X

Frustum -> Cube
Perspective -> Orthogonal

Perspective Projection Matrix

O Perspective projection maps a frustum view volume to
Canonical view volume.

o] =>[-1, 1], [b t] => [-1, 1], [-n, -f] => [-1, 1]
[, f] => [1, -1]

1,1, 1)

(1.-1,-1)

Perspective Projection Matrix

O Perspective normalization

Distorted object

z=X — projects correctly
/z=—far \"‘
VZ%,H- =1 B
COP . z=A
X =1z 2>+7 New clipping
Y=tz >+] volume

z = near/far 2 1

Perspective Projection Matrix

O Persp

ective normalization converts perspective

projection to orthogonal projection.
m Perspective projection matrix with the projection plane as z =

-1,

M

and the center of projection as the origin, M

1 0 0 O
|01 0 0
1o 0o 1 0
0 0 -1 0]

m The field of view is fixed at 90 degrees by making the side of
the viewing volume as 45 degree.

X
Y

=+z
=xz

Perspective Projection Matrix

o N matriX: _1 0 0 O_
N=101 0 0
0 0 o B
0 0 -1 0
o p'=Np:

X=X, y'=VY, I'=az+ f, W=-2

o Perspective division, p'->p”":

X y o a_aZ+p

> X' ==, V'=-=, 2
z z -z

Perspective Projection Matrix

olfx=+zx"==%1
olfy=+zy =41
y —far
o If far plane z = -far, z _dfan+ p =1
far
If near plane z = -near, z”:w:—T
near

O To become z" -> £ 1, select a and B: (-near, -1) & (-far, 1)

a = -

IB:_

far + near ol~far) + j = far & al-near) + = -near

P =—-near + anear

far — near
o far near al~far) +(-near + anear) = far
alnear — far) = near + far
far — near

o 2 neart far _ far+near
near — far far — near

Perspective Projection Matrix

o glm:frustum(left, right, bottom, top, near, far)

T sveor ST s ST

Perspective Projection

Perspective Projection Matrix

2near
_ pright—left . __ , top—heitom _ _ = _
o Then, x_j:—ZMm_ y j:—z"mr z near,z far
O Scale S(2near 2near 1)
(right-left) (top—botiom)

o Then, x=+z y=%1z z=-near,z=—far

o Normalize - -

10 0 0O _ far+near
N=1fo 1 0 o “T far—near
00 a B _ 2farnear
0 0 -1 0] ﬂ__fer—neer

Frustum=NSH
Znear (right + left)
(13 ? g g (right — left) 0 0010 2near g
(far + near) 2farnear 2near o ollo (top + bottom)
g " (far —near) (far — near) (tap — battom) 2near
0 0 -1 1 0J\0 0 1
0 o 1/ M 0 0 1
2near (right + left)
(right — left) ¢ (right —left) ¢
0 2near (top + bottom) o
(top — bottom) (top — bottom)
0 0 (far + near) 2farnear
- (far — near) - (far — near)
] 0 -1 0

Perspective Projection Matrix

Computer Viewing

template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum
(T left, T right, T bottom, T top, T nearVal, T farVal) {

tmat4x4<T, defaultp> Result(0);

Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);

Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);

Result[2][2] = -(farVal + nearVal) / (farVal - nearVal);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = -(static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);

return Result;

o Viewing
m Set the position and direction of the camera.
Model-view transformation matrix

= Apply the projection transformation matrix.

Projection transformation matrix] ‘C/pred out
= Clipping y J i

View volume /.__.x

o Default camera in OpenGL .Z/‘ ssrnos 220
rojection plane =
m Is placed at the origin of the objedt fram R Z

= Faces to the negative z-axis direction.

= Set to orthogonal projection,

m The viewing volume is a cube with a length of 2 on each side
centered on the origin.

m The default projection plane with z=0, the projection direction
is parallel to the z-axis.

Positioning the Camera Frame

o Model-view transformation matrix
o View-orientation matrix using VRP, VPN, VUP
o Look-at function

Positioning the Camera Frame

o Positioning the camera in OpenGL
= Move the camera back from the origin
View = glm:lookAt(glm:vec3(0, 0, 10), glm:vec3(0, O, 0),
glm:vec3(0, 1, 0)); y
= Or, move the object in front of the camera.
World = glm:translate(glm:mat4(1.0f), glm:vec3 0.0, -10));

Yo Ye Ye

| Xk p —x
z, z, /\% z f\\
/ \ / \
World frame = Camera frame Moving the camera frame

after translation by -d, d > 0

Positioning the Camera

Camera Frame

O You can position the camera with successive rotation and
translation.

o Viewing from the x-axis
m R = rotate camera around y-axis
= T = move the camera position away from the origin
World = glm:translate(glm:mat4(1.0f), glm:vec3(0.0, 0.0, -10))
* glm:rotate(glm:mat4(1.0f), -90, gim:vec3(0, 1, 0));

View = glm:lookAt(glm:vec3(10, O, 0), glm:vec3(0, 0, 0), glm:vec3(0, 1, 0))

o View reference point (VRP)

o View plane normal (VPN) n = VRP - PRP

o View-up vector (VUP)

o Side vector u = VUP x n

O Up vectorv=nxu

O u, v, n hormalize n VUP

o Camera frame is defined by viewing coordi
(u-v'-n") and VRP.

PRP (Projection .
Reference Point)

Camera Frame

o View-orientation matrix, M

u, Vv, n, 0

M = u, Vv, n, 0
u, v, n 0

0 0 0 1

o Rotation matrix, M = MT = R
o Camera position in World frame: V = RT

v, o, o, 0f1 0 0 -e| (¢, #, u. -—eetd
v, Vv, v, 00 1 0 -e | |V, , V. -—eev
W, n, ., 010 0 1 -e| [#, »n, n. -—een
0 o 0 10 0 0 1 0 0 0 |

lookAt

o glm:lookAt vec3 & eye vec3 & at, ec3 & up

n—eye—
u—upxn C’f)
v—nxu v
y
i x
¥/
N
n
b4

Y (eye, ., &:ayeyl“,I eye)

lookAt

o £ye Point: camera origin (in World Coordinate System)

O Look-At : the position where the camera is looking at
(the center of the camera image)

o Up-Vector: the camera up vector (in World Coordinate
System)

World space origin Camera space origin Look-at point (p,, p, P,)

gluLookAt

void gluLookAt(GLdouble ex, GLdouble ey, GLdouble ez, GLdouble ax, GLdouble ay, GLdouble az,
Ldouble ux, GLdouble uy, GLdouble uz) {

GLdouble M[16]; GLdouble u[3], v[3], n[3]; GLdouble mag;

n[0] = ex —ax; n[1] = ey — ay; n[2] = ez — az; // n (camera frame Z)
mag = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
if (mag) { n[0] /= mag; n[1] /= mag; n[2] /= mag; }

v[0] = ux; v[1] = uy; v[2] = uz; // u (camera frame X)
ul0] = v[1]*n[2] = v[2]*n[1]; u[1] = -v[0]*n[2] + v[2]*n[0]; u[2] = v[0]*n[1] - v[1]*n[O];
mag = sqrt(u[0]*u[0] + u[1]*u[1] + u[2]*u[2]);

if (mag) { u[0] /= mag; u[1] /= mag; u[2] /= mag; }

v[0] = n[)] ul2] = n[21*u[1]; v[1] = -n[0]*u[2] + n[2]*u[0]; v[2] = n[0]*u[1] - n[1]*u[0]; // v (camera

frame Y.
mag = sqrt(v[01*v[0] + v[11*V[1] + v[2]*V[2]);
if (mag) { v[0] /= mag; v[1] /= mag; v[2] /= mag; }

MIO] = u[0]; MI[4] = u[1]; MI8] =u[2l; M[12] = 0.0; // R

M[1] = v[0]; MI5] = v[1]; MI9] =v[2]; MI[13] = 0.0;

M[2] = n[0]; M[6] = n[1]; M[10] = n[2]; M[14] = 0.0;

M[3] = 0.0; M[7] =0.0; MI[11] =0.0; M[15] = 1.0;
glMultMatrix(M);

glTranslated(-ex, -ey, -ez); // RT

glm::lookAt Matrix Yaw, Pitch, Roll

template <typename T, precision P>

GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH o Yaw — Y-axis rotation
(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) { Pitch — X . .
tvec3<T, P> const f(normalize(center - eye)); O Pitch — X-axis rotation

tvec3<T, P> const s(normalize(cross(f, up)));
tvec3<T, P> const u(cross(s, f));

tmat4x4<T, P> Result(1);

Result[0][0] = s.x;

Result[1][0] = s.y;

Y
y Y

Result[2][0] = s.z; _ y
Result{0][1] = u.x: u=sxf (o, at,at)
Result[1][1] = u.y; - A
Result[2][1] = u.z; i = @t X x z
Resultf0][2] = -f.x;
Result{1][2] = -f.y;

P

Result[2][2] = f.z; D
Result[3][0] = -dot(s, eye);

Result[3][1] = -dot(u, eye);

Result[3][2] = dot(f, eye);

return Result;

o Roll — Z-axis rotation

z
Roll Pitch Yaw
(eye,, eye,, eye,)

Elevation and Azimuth

o Azimuth — X-axis rotation (-180 ~ 180)
o Elevation — Y-axis rotation (-90 ~ 90)
o Twist angle — Z-axis rotation (-180 ~ 180)

n <O:ﬁ—

/’V\

Elevation
Spherical Polar Coordinates System

Azimuth

