
Introduction to
Distributed Systems

470410-1
Spring 2017
3/9/2017

Kyoung Shin Park
Multimedia Engineering

Dankook University

Distributed Systems

 World Wide Web
 Data centers and Cloud computing
 Cluster computing and Grid computing
 Wide area storage systems
 Banking systems and airline reservation systems

Cluster Computing

 It’s a form of computing in which a group of PCs are
linked together so that they can act like a single unit.

 Cheaper to build than a mainframe supercomputer
 It’s scalable (can grow a cluster by adding more PCs)
 Homogeneous network; similar computers

Grid Computing

 It’s a form of distributed computing whereby resources
of many computers in a network is used at the same
time, to solve a single problem.

 To help scientists around the world to analyze and store
massive amounts of data by sharing computing
resources - virtual organizations; job scheduling

 Heterogeneous network;
different computers
running various kinds of OS

Cloud Computing

 It’s a kind of Internet-based computing that provides
shared processing resources and data to computers and
other devices on demand.

 Cloud computing incorporates IaaS (infrastructure as a
service), PaaS (platform as a service) and SaaS (software
as a service) as well as Web 2.0

What is a Distributed System?

 "a collection of independent computers that appears
to its users as a single coherent system" (Tanenbaum)

 "a collection of autonomous computers linked by a
computer network with distributed system software"
(CDK01)

 "a collection of processors interconnected by a
communication network in which each processor has its
own local memory and other peripherals and the
communication between any two processors of the
system takes place by message passing over the
communication network" (Sinha97)

 "one in which hardware or software components located
at networked computers communicate and coordinate
their actions only by passing messages" (CDK01)

What is a Distributed System?

 A collection of independent computers that appears to
users as a single system - a virtual uniprocessor
 Users do not know (or care) where (on what machine) files are

located and where a job is executed

 Communicate with each other via messages
 Have no shared memory
 Have no shared clock
 Each computer has its own operating system

Why have Distributed Systems?

 Price/Performance
 Resource sharing
 Enhanced performance

 Faster response time; higher throughput

 Improved reliability and availability
 If one component goes down, the system does not

 Modular expandability
 Inherently distributed applications

 Airline reservations; Bank ATMs

 Better flexibility

Problems with Distributed Systems

 All communication is done by message passing -
meaning all coordination is decentralized

 There is a lack of global information
 There may be replication of data
 How can failures be detected and recoveries made?

Goals of a Distributed System

 Goals of a distributed system (Tanenbaum & van
Steen)
 Connecting users and resources
 Transparency
 Openness
 Scalability

Goals of a Distributed System

 Challenges of a distributed system (Coulouris,
Dollimore and Kindberg)
 Heterogeneity
 Openness
 Security
 Scalability
 Failure handling
 Concurrency
 Transparency

Goals of a Distributed System

 Characteristics of a distributed system (Galli)
 Shared resources
 Openness
 Concurrency
 Scalability
 Fault tolerance
 Transparency

Concurrency and Shared Resources

 Clearly one of the goals of a distributed system is to
share resources whether data, files, equipment, or
machine cycles. This is similar to what is expected of a
time-sharing system.

 However, in a distributed system, there are many
processors.

 This means that any user can be active at any time
and on any processor. This also means that any
resource can have more than one concurrent request
simultaneously.

 All the mutual exclusion and deadlock problems
are once more to be considered, but with the caveat
that more than one processor can be requesting any
given shared resource.

Openness

 A characteristic that enables systems to be extended
to meet new application requirements and user needs

 Achieved by specifying and documenting the key
software interfaces of a system and making them
available to software developers; i.e. the interfaces
should be publicly available to ease inclusion of new
components

Scalability

 Scalability refers to the ability of a distributed system
to grow without users or applications knowing or
being affected

 How can this be done
 without a global clock or memory?
 without a global state?
 By avoiding any centralized components in the distributed

system
 software
 Hardware
 algorithms

 By basing decisions
 solely on locally-known information

 By recognizing that
 any component could go down at any time
 and being able to continue anyway

Fault Tolerance

 Need fault tolerance if it is able to continue processing
when one or more components of the system fail

 For distributed system to be fault tolerant, it must be able
 to detect errors, faults, threats, or other failures
 to tolerate the failures (i.e., not stumble or crash)
 to mask the failures (i.e., hide them from the user)
 to recover from the failures

 "Each component (of the distributed system) needs to be
aware of the possible ways in which the components it
depends on may fail or be designed to deal with each of
those failures appropriately"

 Both redundancy and decentralization support fault
tolerance

Heterogeneity

 A system is heterogeneous if it is composed of
dissimilar hardware and software.

 Heterogeneity can be contrasted with portability:
 A program that works in a heterogeneous environment must

deal with various hardware and software components at the
same time,

 Whereas a portable program must run on different systems at
different times.

 A related notion is interoperability. It denotes the
ability of different components, possibly from different
vendors, to interact.

Heterogeneity

 The goal of heterogeneity is to have
 different operating systems

 different computer hardware

 different networks

 different programming languages

 All working together to form a single distributed system
 Communication protocols can be used to mask the

network differences
 Middleware, "an additional layer of software between

the applications and the network OS" (Tanvan02) can be
used to handle other differences

Transparency

 Network, Access, Location Transparency
 Name Transparency
 Concurrency, Parallelism Transparency
 Replication Transparency
 Migration (or Relocation), Persistence Transparency
 Failure Transparency
 Performance, Scaling Transparency
 Revision, Size Transparency

Network, Access, Location Transparency

 Network transparency = access + location transparency
 Access transparency

 Enables local and remote information objects to be accessed
using identical operations

 This means that whether some processors in the distributed
system are Windows machines, Unix machines, or Macs, whether
they are Big or Little Endian machines

 The user is able to access objects located on them in exactly
the same manner

 Location transparency
 Enables information objects to be accessed without knowledge

of their location

Name Transparency

 Name transparency
 The distributed system incorporates a global naming scheme
 Objects (files, resources) are not tied to given nodes or sites by

name
 Name transparency assists migration, access, and location

transparencies

Concurrency, Parallelism Transparency

 Concurrency transparency
 Enables several processes to operate concurrently using

shared information objects without interference between
them

 Permits efficient use of shared resources
 Allows no interference between processes sharing resources

 Parallelism transparency
 Permits parallel activities without users knowing how, where,

and when these activities are carried out in the system

Replication Transparency

 Replication transparency
 Enables multiple instances of information objects to be used

to increase reliability and performance without knowledge of the
replicas by users of application programs

 This means that there may be multiple copies of files scattered
over the entire distributed system

Migration, Persistence Transparency

 Migration (or Relocation) transparency
 Allows the movement of information objects within a system

without affecting the operation of users or application programs
 This means that both resources and processes can migrate

without users knowing and be accessed while being relocated

 Persistence transparency
 Refers to the type of memory where files are located
 Specifically, whether or not that memory is stable or volatile

Failure Transparency

 Failure transparency
 Enables the concealment of faults, allowing users and

application programs to complete their tasks despite the failure
of hardware or software components

 This means if a site goes down, it should be unapparent to
other sites or users and work continues

Performance, Scaling Transparency

 Performance transparency
 Allows the system to be reconfigured to improve performance

as loads vary

 Scaling transparency
 Allows the system and applications to expand in scale without

change to the system structure or the application algorithms

Size, Revision Transparency

 Size transparency
 Allows incremental growth of a system without the user's

awareness
 Clearly, this is a form of scaling transparency

 Revision transparency
 Software revisions of the system are not visible to users
 This is also a form of scaling transparency

What is a distributed operating system?

 “A collection of software components that simplifies the
task of programming and supports the widest possible
range of applications" (CDK01)

 "A distributed operating system is one that looks to its
users like an ordinary centralized operating system but
runs on multiple, independent central processing units
(CPUs). The key concept here is transparency. In other
words, the use of multiple processors should be invisible
(transparent) to the user. Another way of expressing the
same idea is to say that the user views the system as a
'virtual uniprocessor,' not as a collection of distinct
machines." (Sinha97)

 Global knowledge
 Naming
 Scalability
 Compatibility
 Process synchronization
 Resource management
 Security
 Structuring

Issues in Distributed Operating System Issues: Global Knowledge

 Unlike a uniprocessor or even a shared memory
multiprocessor

 Unable to determine up-to-date global system state
 No global memory
 No common clock
 Unpredictable message delays

 Need device-efficient distributed control
 E.g. how to get a consensus between nodes in the system

 Need method for ordering events

Issues: Naming

 All objects (files, computers, services, etc) are named in
order to differentiate one from another

 The name of an object should also be mapped onto
its location
 This can be done with a naming service that maps a logical

name into a physical address

 Need a directory (or directories)
 Replicated (how to maintain consistency between copies?)

versus
 Partitioned (i.e., should replicated pieces of it reside on

different machines) (how to find the correct partition
containing a name of interest?)

Issues: Scalability, Synchronization

 Scalability
 Can system grow (both in size and in number of users)

without performance degradation?
 Want to avoid centralized components (i.e., centralized

bottlenecks)

 Process synchronization
 Enforce mutual exclusion to shared resources
 Deal with potential for deadlock

Issues: Compatibility

 Compatibility refers to the notion of interoperability
among the resources in a system

 Compatibility provides flexibility especially in a
heterogeneous environment

 Compatibility may be possible at different levels
 Binary level:

 All processing elements run same binary code

 Execution level:
 Same source code can be compiled and run on all nodes (PC,

Unix, Mac)

 Protocol level:
 All processing elements support same protocols

Issues: Resource Management

 Data migration: bring data to the location
 distributed file system
 distributed shared memory

 Computation migration: computation moves to a
remote location
 e.g. RPC (Remote Procedure Call)
 e.g. send a query for info computed remotely instead of

requesting raw data

 Distributed scheduling
 process migration

Issues: Security

 Authentication
 verify user identification

 Authorization
 determine user privileges

Issues: Structuring

 Monolithic kernel
 Unix, OS/360
 Each node doesn’t need entire kernel

 Collective kernel
 OS services are processes
 Microkernel supports messages between such processes

 Object-oriented
 OS services are a collection of objects

Client-Server vs. Peer-To-Peer

 Client-Server
 Similar to collective kernel distributed O.S.
 Servers respond to requests from clients

 Peer-to-Peer
 An extension of client/server model
 A many-to-many relationship between nodes

Client/Server Model

Peer-to-Peer Model Network Protocol

 Protocol is a set of conventions for formatting data in an
electronic communications system

 A method for
 Establishing a connection between two sites
 Sending a communication over the connection
 Acknowledging receipt of message
 Terminating the connection

 Examples: ISO/OSI, TCP/IP, UDP, SMTP

ISO/OSI Protocol

 Probably most popular network protocol model
 Implementation often takes efficiency-related shortcuts
 Includes 7 layers, grouped into 3 types

 Application
 Operating system
 Communication service

Internet Protocol Stack

 A 5 layer protocol
 Application Layer
 Transport Layer
 Network Interface
 Link Layer
 Physical Layer

TCP/IP Network Architecture

 A 4-layer protocol on top of hardware (physical layer)
 Application Layer
 Transport Layer
 Internet Layer
 Network Interface

44

Reference

 http://www.cs.colostate.edu/~cs551/CourseNotes/Intro
duction/IntroTOC.html

 http://www.buzzle.com/articles/differences-and-
similarities-between-grid-and-cluster-computing.html

 https://en.wikipedia.org/wiki/Cloud_computing

