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Criteria for Evaluating Concurrent 
Programming Constructs

� With advanced mechanisms for concurrency control, 
we should consider the following criteria:
� Applicability to Centralized and Distributed system
� Expressive Power
� Modularity
� Ease of Use
� Program Structure
� Real-Time Systems
� Process Failure & Timeouts
� Unanticipated Faults

Applicability

� Applicability to Centralized and Distributed system
� Since there are times when both centralized systems and 

distributed systems need to interact, it is best if such 
constructs can work in both directions and both 
environments.

� Centralized system (the shared memory model)
� Distributed system (the loosely-coupled model)

Expressive Power

� Exclusion constraints
� Does the construct provide for mutual exclusion? 

� Priority constraints
� Is the construct able to express priority between processes?

� Conditions
� Does the construct permit that certain conditions must be 

satisfied before a process can execute? Such conditions would 
include the following:

� Type of request (e.g. readers versus writers)
� Time of request (e.g. timestamps)
� Request parameters (e.g. filename)
� Process information (e.g. for load balancing)
� Priority relations (static)
� Local state of resources (e.g. to prevent overloading)
� History information (e.g. for aging)



Modularity

� We should consider two differing viewpoints
� The operating system should regulate access to all shared 

resources
� The operating system should regulate interaction between 

processes (shared memory versus message passing)

� This provides two orthogonal modularization criteria
� Resources should be separated from each other – Each may 

contain synchronization and scheduling information and 
operations

� Synchronization and scheduling should be separated from 
operation and state – We may need to allow for some global 
control

Ease of Use

� How difficult or complex is it to construct a solution 
using the given construct?

� Can a problem be broken into single parts?
� Is it easy to modify a solution? (e.g. add or change a 

constraint)

Program Structure

� Does the structure of the mechanism fit well with the 
overall program structures?

� Does the structure help the programmer avoid 
problems? (e.g. nested monito calls)

Real-Time Systems

� Concurrent programming techniques are not used 
much in real-time programming languages
� They would need to include facilities for

� Time-out
� Time-of-day
� Delay for a certain length of time
� Etc

� They would need run-time error handling
� Even for unrecoverable errors



Failures

� Process Failures and Timeouts
� We want to keep the failure of one process from affecting 

other processes
� We need to be able to detect a failure and know

� If it was caused by a timeout
� If it was caused by another exception

� It would be best if we can define exception handling 
procedures as part of the structure

� Such procedures need to leave the state consistent
� Such procedures may cost some efficiency
� Such procedures should try to avoid mutual exclusion, if only 

synchronization is needed – If mutual exclusion is needed, it can 
be done more efficiently in hardware or firmware

Faults

� Unanticipated Faults
� Assuming no exception handler provided
� We can provide a recovery block of code

� That allows backtracking to a state before the error
� That is able to detect an error
� That could permit a retry with a different algorithm

� This concept is fairly untried
� It may not be feasible for complex situations
� It may be too expensive

Semaphores

� Semaphore
� A semaphore is “an integer variable that apart from initialization, 

is accessed only through two standard atomic operations: wait
and signal” (SilGal98)

� “These operations were originally termed P (for wait; from the 
Dutch proberen, to test) and V (for signal; from verhogen, to 
increment)” (SilGal98)

� Dijkstra introduced these terms and used these operations in the 
operating system

� For semaphore s
wait(s): while s <= 0

do no-op;
s--;

signal(s): s++;

� Where wait(s) is the same as P(s) and signal(s) is the same as V(s)

Semaphores

� Semaphore actions
� Must be atomic actions
� Must be indivisible
� Must be uninterruptible

� Further, both the test of the semaphore and the 
change of the value of the semaphore must happen 
together

� Note that s can be any integer
� There are two types of semaphores:

� Two-valued (could be represented as boolean or int)
� Integer (could be multi-valued)



Semaphore Example (SS)

� Semaphore use in a sequential system
� Consider a sequential system with 3 running processes, 

Process 1, 2, 3
� Each of the processes has access to a shared semaphore, s
� Each process has a critical section controlled by s

Semaphore Example (SS)

� Initially s = 1
� With no processes in their critical section

� Steps
a. Process3 requests its critical sections

� Since s = 1, s <= 0, so s is decremented by 1, making s = 0

b. Process3 is granted access to its critical section
c. Process1 requests its critical section,

� But s <= 0, as s = 0

d. Process1 starts a busy wait, 
� Continually retesting s until s > 0

e. Process2 requests its critical section
� But s <= 0, as s = 0

f. Process2 starts a busy wait, 
� Continually retesting s until s > 0

Semaphore Example (SS)

g. Process3 finishes its critical section,
� So s is incremented by 1, making s = 1, releasing access to the 

critical section

h. Process1 checks the value of s
� Since s = 1, s ! <= 0, So s is decremented by 1, making s = 0, 

and Process1 is granted access to its critical section

i. Process1 finishes its critical section
� So s is incremented by 1, making s = 1, releasing access to the 

critical section

j. Process2 checks the value of s
� Since s = 1, s ! <= 0, So s is decremented by 1, making s = 0, 

and Process2 is granted access to its critical section

k. Process2 finishes its critical section
� So s is incremented by 1, making s = 1, releasing access to the 

critical section

Semaphore Example (DS)

� Semaphore use in a distributed system
� Consider a distributed system with 3 running processes, 

Process 1, 2, 3
� Each of the processes has access to a shared semaphore, s
� Each process has a critical section controlled by s
� Assume the semaphore/lock is controlled by a centralized lock 

manager



Semaphore Example (DS)

� Initially s = 1
� With no processes in their critical section

� Steps
a. Process3 requests its critical sections

� Since s = 1, s <= 0, so s is decremented by 1, making s = 0

b. Process3 is granted access to its critical section
c. Process1 requests its critical section,

� But s <= 0, as s = 0

d. Process1 is placed on a queue, 
� Until s > 0

e. Process2 requests its critical section
� But s <= 0, as s = 0

f. Process2 is queued, 
� Until s > 0

Semaphore Example (DS)

g. Process3 finishes its critical section,
� So s is incremented by 1, making s = 1, releasing access to the 

critical section

h. The central manager checks the semaphore value s
� Since s = 1, s ! <= 0, So s is decremented by 1, making s = 0, 

and Process1 is granted access to its critical section by the 
central manger

i. Process1 finishes its critical section
� So s is incremented by 1, making s = 1, releasing access to the 

critical section

j. The central manager checks the semaphore value s
� Since s = 1, s ! <= 0, So s is decremented by 1, making s = 0, 

and Process2 is granted access to its critical section by the 
central manager

k. Process2 finishes its critical section
� So s is incremented by 1, making s = 1, releasing access to the 

critical section

Semaphore for Producer/Consumer 
Problem

sem nfull = 0; 
sem nempty = N; 
sem mutexP, mutexC = 1; 
info buffer[N]; int in, out = 0; 
producer() { 
begin 

create one unit of type info, U; 
P(mutexP); //one producer
P(nempty); //wait for empty 
buffer[in] = U; 
in = (in++) % N; 
V(nfull); //signal full 
V(mutexP); 

end; 
}

consumer() { 
begin 

P(mutexC); //one consumer   
P(nfull); //wait for full 
U= buffer[out]; 
out = (out++) % N; 
V(nempty); //signal empty 
V(mutexC); 
consume one unit of type info, U; 

end; 
}

Semaphore for Reader/Writer Problem
int nreaders = 0;
sem mutex, wmutex, srmutex = 1; 
reader() { 

P(mutex); 
nreaders++; //#reader++
if (nreaders == 0)

P(wmutex) ; //wait until no writer
V(mutex); 

… read ... ; 

P(mutex); 
nreaders --; //#reader--
if (nreaders == 0) 

V(wmutex); //signal
V(mutex); 

}

writer () { 
P(srmutex); 
P(wmutex); 

… write ... ; 

V(wmutex); 
V(srmutex); 

}

mutex protects modifications to nreaders
wmutex protects makes sure that only 
readers or just one writer is active 
V(wmutex) should unblock a waiting 
reader before V(srmutex) can release a 
waiting writer 



Disadvantage of Semaphores

� Simple algorithms require more than one semaphore
� This increases the complexity of semaphore solutions to such 

algorithms
� Semaphore are too low level.

� It is easy to make programming mistakes
� The programmer must keep track of all calls to wait and 

to signal the semaphore.
� If this is not done in the correct order, programmer error can 

cause deadlock.
� Semaphores are used for both condition synchronization 

and mutual exclusion.
� These are distinct and different events, and it is difficult to know 

which meaning any given semaphore may have.
� What happens if system crashes when one process is in 

the critical sections?

Monitors

� A monitor is a high-level synchronization primitive
� Developed by Hoare and Brinch Hansen
� A programming language construct
� A compiler-supported data structure with 

� Procedures

� Variables

� Data structures

� Similar to today’s classes and objects, e.g. Concurrent Pascal, Java
� Outside processes may

� Call monitor procedure
� Not access monitor data structures

� Only one process is active in monitor at once
� Ensuring mutual exclusion
� Blocking other processes are blocked

� It may be implemented using binary semaphores

Monitor Definitions
� A monitor is an abstract mechanism which

� Encapsulates abstract resources, and
� Provides functions to manipulate those resources

� Can be though of as an object(or ADT) containing
� A data structure, and operations (methods) for manipulating that 

data structure, where only one process can execute an operation 
at a time.

� It other words, it is an object with synchronization.
� Only allows the resources to be accessed through the 

monitor operations:
� Only the procedure names of the monitor operations are visible 

outside the monitor.
� Monitor procedures may only access monitor variables within the 

monitor itself.
� All shared variables declared within the monitor are initialized 

before execution begins. 
� Provides mutual exclusion:

� Only one process may be executing within a monitor at any given 
time.

� Concurrent processes can use the monitor resources.

Advantages of Monitors

� A process calling a monitor procedure (or method) can 
ignore the actual implementation (as in any abstract 
data type).

� Once a monitor is correctly programmed, it remains 
correct, despite the number of processes executing (as 
in object-oriented programming).

� The implementation of a monitor can be changed 
without affecting the application or the user’s view of 
the monitor resources (as in object-oriented 
programming).

� Monitors provide mutual exclusion on a higher level 
than semaphores or conditional critical regions.



Representation of a Monitor Condition Variables

� Condition variables allow a process executing within the 
monitor to be put to sleep to wait for some condition to 
be set (signaled). 
� They are used to delay a process that cannot safely proceed until 

there is a change in the state of the monitor. 
� This avoids deadlock within the monitor.

� Condition variables can also awaken a sleeping process 
to let it be actively executing again within the monitor.
� Condition variables wake up delayed or suspended processes 

within the monitor.
� A condition variable is just a data structure (or class) 

consisting of
� A boolean value
� A queue of delayed processes

� A condition variable is a shared data variable within the 
monitor.

Condition Variables

� Commands related to condition variables include:
� Wait(c): 

� The process currently active in the monitor suspends execution and 
gives up mutual exclusion to the monitor until the condition 
variable c is signaled. It is placed on the end of the queue of 
delayed processes waiting for c to be signaled.

� Signal(c): 
� The process at the front of the queue is awakened and resumes 

execution within the monitor. If the queue connected to the 
condition variable c is empty, nothing happens; this is equivalent to 
a skip operation.

� A drawback of condition variables is that compilers for 
monitor-supporting languages usually rely on shared 
memory.

Monitors vs. Semaphores

� Wait versus P(s) and Signal versus V(s)
� The signal command has no effect if there is no suspended 

process. V(s) always increments s.
� The wait command always delays until there is a signal 

command. P(s) only delays if s is not positive.
� The process that executes the signal command is currently 

executing within the monitor. V(s) and P(s) may be used outside 
the critical section.



Disadvantages of Monitors

� Monitors can exhibit an absence of concurrency, when a 
monitor encapsulates a resource since only one process 
can be active at a time within the monitor.

� When using nested monitor calls, there is a possibility of 
deadlock.

Implementation Issues for Monitors
� Suppose process Q is waiting on the condition variable c 

in a monitor.
� Further suppose that process P is active in the monitor and 

executes c. signal, waking up  Q.
� Now which process continues to be active in the monitor?

� This turns out to be an implementation issue 
� (i.e., how the monitors are implemented).

� When P signals Q, there are three choice of actions:
I. P may continue to execute in the monitor. However, if it does 

so, P may alter the condition that awakened Q.
II. P may wait (suspend) while Q executes in the monitor until Q 

is done or some other condition becomes true. This is the 
method preferred by Hoare.

III. P executes the signal command and immediately leaves the 
monitors. In other words, the signal command is the last line 
of the procedure P executes. This is the method preferred by 
Brinch Hansen.

Monitor for Producer/Consumer Problem
monitor ProducerConsumer { 
int itemCount;
condition full;
condition empty;
procedure add(item) { 
while (itemCount == BUFFER_SIZE) { 
wait(full);

} 
putItemIntoBuffer(item);
itemCount = itemCount + 1;
if (itemCount == 1) { 
notify(empty);

} 
} 

procedure remove() { 
while (itemCount == 0) { 
wait(empty);

} 
item = removeItemFromBuffer();
itemCount = itemCount – 1;
if (itemCount == BUFFER_SIZE - 1) { 
notify(full);

} 
return item;

}
}

Monitor for Producer/Consumer Problem
procedure producer() { 
while (true) { 
item = produceItem();
ProducerConsumer.add(item);

} 
}
procedure consumer() { 
while (true) { 
item = ProducerConsumer.remove();
consumeItem(item);

} 
} 



References

� http://www.cs.colostate.edu/~cs551/CourseNotes/Concu
rrentConstructs/ConcurrentTOC.html


