Concurrency

Criteria for Evaluating Concurrent
Programming Constructs

470410-1
Spring 2017
4/13/2017
Kyoung Shin Park
Multimedia Engineering
Dankook University

o With advanced mechanisms for concurrency control,
we should consider the following criteria:

Applicability to Centralized and Distributed system

Expressive Power

Modularity

Ease of Use

= Program Structure

= Real-Time Systems

m Process Failure & Timeouts

m Unanticipated Faults

Applicability

o Applicability to Centralized and Distributed system

= Since there are times when both centralized systems and
distributed systems need to interact, it is best if such
constructs can work in both directions and both
environments.

m Centralized system (the shared memory model)

m Distributed system (the loosely-coupled model)

Expressive Power

O Exclusion constraints
m Does the construct provide for mutual exclusion?

O Priority constraints
m |s the construct able to express priority between processes?

o Conditions
m Does the construct permit that certain conditions must be
satisfied before a process can execute? Such conditions would
include the following:
Type of request (e.g. readers versus writers)
Time of request (e.g. timestamps)
Request parameters (e.g. filename)
Process information (e.g. for load balancing)
Priority relations (static)
Local state of resources (e.g. to prevent overloading)
History information (e.g. for aging)

Modularity

Ease of Use

o We should consider two differing viewpoints
= The operating system should regulate access to all shared
resources

m The operating system should regulate interaction between
processes (shared memory versus message passing)

O This provides two orthogonal modularization criteria
m Resources should be separated from each other — Each may
contain synchronization and scheduling information and
operations
m Synchronization and scheduling should be separated from
operation and state — We may need to allow for some global
control

o How difficult or complex is it to construct a solution
using the given construct?

o Can a problem be broken into single parts?

O Is it easy to modify a solution? (e.g. add or change a
constraint)

Program Structure

Real-Time Systems

o Does the structure of the mechanism fit well with the
overall program structures?

o Does the structure help the programmer avoid
problems? (e.g. nested monito calls)

o Concurrent programming techniques are not used
much in real-time programming languages
= They would need to include facilities for
Time-out
Time-of-day
Delay for a certain length of time
Etc
= They would need run-time error handling
Even for unrecoverable errors

Failures

O Process Failures and Timeouts
= We want to keep the failure of one process from affecting
other processes
= We need to be able to detect a failure and know
If it was caused by a timeout
If it was caused by another exception
® It would be best if we can define exception handling
procedures as part of the structure
Such procedures need to leave the state consistent
Such procedures may cost some efficiency

Such procedures should try to avoid mutual exclusion, if only
synchronization is needed — If mutual exclusion is needed, it can
be done more efficiently in hardware or firmware

Faults

o Unanticipated Faults
= Assuming no exception handler provided
= We can provide a recovery block of code
That allows backtracking to a state before the error
That is able to detect an error
That could permit a retry with a different algorithm
m This concept is fairly untried
It may not be feasible for complex situations
It may be too expensive

Semaphores

o Semaphore

m A semaphore is “an integer variable that apart from initialization,
is accessed only through two standard atomic operations: wait
and signal” (SilGal98)

= "These operations were originally termed P (for wait; from the
Dutch proberen, to test) and V (for signal; from verhogen, to
increment)” (SilGal98)

m Dijkstra introduced these terms and used these operations in the
operating system

o For semaphore s
wait(s): whiles <=0
do no-op;
s--;
signal(s): s++;
= Where wait(s) is the same as P(s) and signal(s) is the same as V(s)

Semaphores

o Semaphore actions
= Must be atomic actions
m Must be indivisible
= Must be uninterruptible

o Further, both the test of the semaphore and the
change of the value of the semaphore must happen
together

O Note that s can be any integer

O There are two types of semaphores:
= Two-valued (could be represented as boolean or int)
= Integer (could be multi-valued)

Semaphore Example (SS)

Semaphore Example (SS)

O Semaphore use in a sequential system

= Consider a sequential system with 3 running processes,
Process 1, 2, 3

m Each of the processes has access to a shared semaphore, s
m Each process has a critical section controlled by s

N
Critical b.
Section ,

O Initially s = 1
= With no processes in their critical section
O Steps
a. Process3 requests its critical sections
Sinces = 1,s <=0, so s is decremented by 1, making s = 0
b. Process3 is granted access to its critical section
c. Process1 requests its critical section,
Buts <=0,ass =0
d. Process1 starts a busy wait,
Continually retesting s until s > 0
e. Process2 requests its critical section
Buts <=0,ass=0
f. Process2 starts a busy wait,
Continually retesting s until s > 0

Semaphore Example (SS)

Semaphore Example (DS)

g. Process3 finishes its critical section,

So s is incremented by 1, making s = 1, releasing access to the
critical section

h. Process1 checks the value of s
Sinces = 1,s! <=0, So s is decremented by 1, making s = 0,
and Process1 is granted access to its critical section
Process1 finishes its critical section

So s is incremented by 1, making s = 1, releasing access to the
critical section

j. Process2 checks the value of s
Sinces = 1,s! <=0, So s is decremented by 1, making s = 0,
and Process?2 is granted access to its critical section

k. Process2 finishes its critical section

So s is incremented by 1, making s = 1, releasing access to the
critical section

O Semaphore use in a distributed system

m Consider a distributed system with 3 running processes,
Process 1, 2, 3

m Each of the processes has access to a shared semaphore, s
m Each process has a critical section controlled by s
= Assume the semaphore/lock is controlled by a centralized lock

manager
a.
b. Process
£ 3

Semaphore Example (DS)

Semaphore Example (DS)

O Initially s = 1
= With no processes in their critical section
O Steps
a. Process3 requests its critical sections
Since s = 1, s <=0, so s is decremented by 1, making s = 0
b. Process3 is granted access to its critical section
c. Process1 requests its critical section,
Buts <=0,ass=0
d. Process1 is placed on a queue,
Untils > 0
e. Process2 requests its critical section
Buts <=0,ass=0
. Process2 is queued,
Untils > 0

g. Process3 finishes its critical section,
So s is incremented by 1, making s = 1, releasing access to the
critical section

h. The central manager checks the semaphore value s
Sinces = 1,s! <=0, So s is decremented by 1, making s = 0,
and Process1 is granted access to its critical section by the
central manger

Process1 finishes its critical section

So s is incremented by 1, making s = 1, releasing access to the
critical section

j. The central manager checks the semaphore value s
Sinces = 1,s! <=0, So s is decremented by 1, making s = 0,
and Process2 is granted access to its critical section by the
central manager

k. Process2 finishes its critical section

So s is incremented by 1, making s = 1, releasing access to the
critical section

Semaphore for Producer/Consumer
Problem

Semaphore for Reader/Writer Problem

sem nfull = 0;

consumer() {

sem nempty = N; begin

sem mutexP, mutexC = 1;
info buffer[N]; int in, out = 0;
producer() {

}

P(mutexC); //one consumer
P(nfull); //wait for full
U= buffer[out];
begin out = (out++) % N;
create one unit of type info, U; V(nempty); //signal empty
P(mutexP); //one producer V(mutexC);
P(nempty); //wait for empty consume one unit of type info, U;
buffer[in] = U; end;
in = (in++) % N; }
V(nfull); //signal full
V(mutexP);
end;

int nreaders = 0; writer () {
sem mutex, wmutex, srmutex = 1; P(srmutex);
reader() { P(wmutex);
P(mutex);
nreaders++; //#reader++ write . -
if (nreaders == 0) o
P(wmutex) ; //wait until no writer
. V(wmutex);
V(mutex);
V(srmutex);
... read ... ; }
P(mutex); mutex protects modifications to nreaders

nreaders --; //#reader--
if (nreaders == 0)

V(wmutex); //signal
V(mutex);

wmutex protects makes sure that only
readers or just one writer is active
V(wmutex) should unblock a waiting
reader before V(srmutex) can release a
waiting writer

Disadvantage of Semaphores

a

Simple algorithms require more than one semaphore

m This increases the complexity of semaphore solutions to such
algorithms

Semaphore are too low level.

m |t is easy to make programming mistakes

The pro?rammer must keep track of all calls to wait and

to signal the semaphore.

= If this is not done in the correct order, programmer error can
cause deadlock.

Semaphores are used for both condition synchronization

and mutual exclusion.

m These are distinct and different events, and it is difficult to know
which meaning any given semaphore may have.

What .h.ap\oens if system crashes when one process is in
the critical sections?

a

a

a

a

Monitors

O A monitor is a high-level synchronization primitive
m Developed by Hoare and Brinch Hansen
= A programming language construct
= A compiler-supported data structure with
Procedures
Variables
Data structures
= Similar to today's classes and objects, e.g. Concurrent Pascal, Java
o Outside processes may
m Call monitor procedure
m Not access monitor data structures
o Only one process is active in monitor at once
m Ensuring mutual exclusion
m Blocking other processes are blocked
O It may be implemented using binary semaphores

Monitor Definitions

o A monitor is an abstract mechanism which
m Encapsulates abstract resources, and
m Provides functions to manipulate those resources
o Can be though of as an object(or ADT) containing

= A data structure, and operations (methods) for manipulating that
data structure, where only one process can execute an operation
at a time.

m |t other words, it is an object with synchronization.

O Onlx,allows the resources to be accessed through the
monitor operations:

= Only the procedure names of the monitor operations are visible
outSide the monitor.

= Monitor procedures may only access monitor variables within the
monitor Itself.

m All shared variables declared within the monitor are initialized
before execution begins.

o Provides mutual exclusion:

= Only one process may be executing within a monitor at any given
time.

= Concurrent processes can use the monitor resources.

Advantages of Monitors

O A process calling a monitor procedure (or method) can
ignore the actual implementation (as in any abstract
data type).

o Once a monitor is correctly programmed, it remains
correct, despite the number of processes executing (as
in object-oriented programming).

O The implementation of a monitor can be changed
without affecting the application or the user’s view of
the monitor resources (as in object-oriented
programming).

O Monitors provide mutual exclusion on a higher level
than semaphores or conditional critical regions.

Representation of a Monitor

Condition Variables

Quene of
Entering
Processes
Monitor Waiting Area enflance MONTITOR
v

Cond. ¥ar. 1
| Local Data
Cond. Var.n
-1 —
Wait{cyn)
Procedure k
Ur gent Quene
paiil i ce |
Signal |

lcn'f

o Condition variables allow a process executing within the
monitor to be put to sleep to wait for some condition to
be set (signaled).

= They are used to delay a process that cannot safely proceed until
there is a change in the state of the monitor.
m This avoids deadlock within the monitor.

o Condition variables can also awaken a sleeping process
to let it be actively executing again within the monitor.

= Condition variables wake up delayed or suspended processes
within the monitor.

O A condition variable is just a data structure (or class)
consisting of

= A boolean value
m A queue of delayed processes

O A condition variable is a shared data variable within the
monitor.

Condition Variables

Monitors vs. Semaphores

o Commands related to condition variables include:
= Wait(c):
The process currently active in the monitor suspends execution and
gives up mutual exclusion to the monitor until the condition
variable c is signaled. It is placed on the end of the queue of
delayed processes waiting for ¢ to be signaled.

= Signal(c):
The process at the front of the queue is awakened and resumes
execution within the monitor. If the queue connected to the
condition variable c is empty, nothing happens; this is equivalent to
a skip operation.
o A drawback of condition variables is that compilers for
monitor-supporting languages usually rely on shared

memory.

o Wait versus P(s) and Signal versus V(s)

m The signal command has no effect if there is no suspended
process. V(s) always increments s.

m The wait command always delays until there is a signal
command. P(s) only delays if s is not positive.

m The process that executes the signal command is currently
executing within the monitor. V(s) and P(s) may be used outside
the critical section.

Disadvantages of Monitors

O Monitors can exhibit an absence of concurrency, when a
monitor encapsulates a resource since only one process
can be active at a time within the monitor.

0 When using nested monitor calls, there is a possibility of
deadlock.

Implementation Issues for Monitors

O Suppose process Q is waiting on the condition variable ¢
In @ monitor.

m Further suppose that process P is active in the monitor and
executes c. signal, waking up Q.
= Now which process continues to be active in the monitor?
o This turns out to be an implementation issue
= (i.e., how the monitors are implemented).
o When P signals Q, there are three choice of actions:
I P may continue to execute in the monitor. However, if it does
so, P may alter the condition that awakened Q.

I P may wait (suspend) while Q executes in the monitor until Q
is done or some other condition becomes true. This is the
method preferred by Hoare.

. P executes the signal command and immediately leaves the
monitors. In other words, the signal command is the last line
of the procedure P executes. This is the method preferred by
Brinch Hansen.

Monitor for Producer/Consumer Problem

procedure remove() {
while (itemCount == 0) {
wait(empty);

monitor ProducerConsumer {
int itemCount;
condition full;
condition empty; }
procedure add(item) { item = removeltemFromBuffer();
while (itemCount == BUFFER_SIZE) { itemCount = itemCount - 1;

wait(full); if (temCount == BUFFER_SIZE - 1) {
} notify(full);
putltemIintoBuffer(item); }
itemCount = itemCount + 1; return item;
if (itemCount == 1) { 1

notify(empty); }

}
}

Monitor for Producer/Consumer Problem

procedure producer() {
while (true) {

}
}

item = produceltem();
ProducerConsumer.add(item);

procedure consumer() {
while (true) {

}
}

item = ProducerConsumer.remove();
consumeltem(item);

References

O http://www.cs.colostate.edu/~cs551/CourseNotes/Concu
rrentConstructs/ConcurrentTOC.html

