
System Models

527950-1
Fall 2019
9/26/2019

Kyoung Shin Park
Applied Computer Engineering

Dankook University

Chapter 2. System Models

From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems: Concepts and Design

Edition 5, © Addison-Wesley 2012

Overview
 Physical Models
 Architectural Models

1. Architectural Elements
A. Communicating entities : Process, Object, Component, Web Service
B. Communication paradigms : IPC, Remote Invocation, Indirect

Communication
C. Roles and responsibilities : Client-Server, Peer-to-peer
D. Placement : Multiple servers, Caching, Mobile Code, Mobile Agents

2. Architectural Patterns
A. Layering
B. Tiered-Architecture : Two-tier, Three-tier Architectures
C. Thin Clients
D. Other patterns : proxy, brokerage

3. Middleware Platforms
 Fundamental Models

 Interaction Model
 Failure Model
 Security Model

Physical Models

 Definition
 The hardware composition of a system in terms of the

computers (and other devices) and their interconnecting
networks

 A representation of the underlying hardware elements of a
distributed system that abstracts away from specific details of
the computer and networking technologies employed

 Three generations of distributed systems
 Early distributed systems; in response to LAN technologies
 Internet-scale distributed systems; in response to Internet
 Contemporary distributed systems

 The emergence of mobile computing
 The emergence of ubiquitous computing
 The emergence of cloud computing

Figure 2-1. Generations of Distributed Systems

Architectural Models Architectural Models

 Definition
 The architecture of a system is its structure in terms of

separately specified components and their interrelationships

 Goal
 Ensure that the structure will meet present and likely future

demands on it

 Major Concerns
 Make the system reliable, manageable, adaptable and cost-

effective

Architectural Models

 Three-stage approach :
1. Looking at the core underlying architectural elements
2. Examining composite architectural patterns
3. Considering middleware platforms that are available to

support the various styles of programming that emerge from
the above architectural styles

Figure 2-2. Communicating Entities and Communication Paradigms

1. Architectural Elements

1. Architectural Elements

 Consider four key questions to understand the
fundamental building blocks of a distributed system
A. Communicating entities - What are the entities that are

communicating in the distributed system?
B. Communication paradigms - How do they communicate, or,

more specifically, what communication paradigm is used?
C. Roles and responsibilities - What (potentially changing)

roles and responsibilities do they have in the overall
architecture?

D. Placement - How are they mapped on to the physical
distributed infrastructure (what is their placement)?

1.A. Communicating Entities

1. Processes
 The prevailing view of a distributed system
 Coupled with appropriate inter-process communication paradigms
 Caveats

 In some primitive environments, such as sensor networks, the
underlying operating systems may not support process abstractions,
and hence the entities in such systems are nodes

 In most distributed system environments, processes are supplemented
by threads

2. Objects
 Consists of a number of interacting objects representing natural

units of decomposition for the given problem domain
 Accessed via interfaces
 An associated interface definition language (or IDL) providing a

specification of the methods defined on an object

1.A. Communicating Entities

3. Components
 Resemble objects in that they offer problem-oriented

abstractions and are also accessed through interfaces
 Components specify not only their interfaces but also the

assumptions they make in terms of other components/interfaces
that must be present for a component to fulfil its function

 Make all dependencies explicit and provide a more complete
contract for system construction

4. Web Services
 Approach based on encapsulation of behavior and access

through interfaces
 Web services are intrinsically integrated into the World Wide

Web, using web standards to represent and discover services

Distributed Objects and Components

 Programming abstractions

 Middleware solutions
 Provide a higher-level programming abstractions for the

distributed systems and, through layering, to abstract over
heterogeneity in the underlying infrastructure to promote
interoperability and portability

Distributed Objects and Components

 Distributed object middleware
 Adopt an object-oriented programming model
 Communicating entities are represented by objects
 Objects communicate mainly using remote method

invocation(RMI)
 Encapsulation and data abstraction
 Java RMI and CORBA

struct Rectangle{ 1
long width;
long height;
long x;
long y;

} ;

struct GraphicalObject { 2
string type;
Rectangle enclosing;
boolean isFilled;

};

interface Shape { 3
long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4
interface ShapeList { 5

exception FullException{ }; 6
Shape newShape(in GraphicalObject g) raises (FullException); 7
All allShapes(); // returns sequence of remote object references 8
long getVersion() ;

};
Figure 8-2. IDL Interfaces: Shape and ShapeList

Distributed Objects and Components

module Whiteboard {
struct Rectangle{
...} ;
struct GraphicalObject {
...};
interface Shape {
...};
typedef sequence <Shape, 100> All;
interface ShapeList {
...};

};

Figure 8-3. IDL Model : Whiteboard

Distributed Objects and Components

Type Examples Use
sequence typedef sequence <Shape, 100> All;

typedef sequence <Shape> All
bounded and unbounded sequences
of Shapes

Defines a type for a variable-length
sequence of elements of a specified
IDL type. An upper bound on the
length may be specified.

string String name;
typedef string<8> SmallString;
unbounded and bounded
sequences of characters

Defines a sequences of characters,
terminated by the null character. An
upper bound on the length may be
specified.

array typedef octet uniqueId[12];
typedef GraphicalObject GO[10][8]

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

this figure continues on the next slide

Figure 8-4. IDL Constructed Types

Distributed Objects and Components

Figure 8-4. IDL Constructed Types

Type Examples Use
record struct GraphicalObject {

string type;
Rectangle enclosing;
boolean isFilled;

};

Defines a type for a record containing a
group of related entities. Structs are
passed by value in arguments and
results.

enumerated enum Rand
(Exp, Number, Name);

The enumerated type in IDL maps a
type name onto a small set of integer
values.

union union Exp switch (Rand) {
case Exp: string vote;
case Number: long n;
case Name: string s;

The IDL discriminated union allows
one of a given set of types to be passed
as an argument. The header is
parameterized by an enum, which
specifies which member is in use.};

Distributed Objects and Components Distributed Objects and Components
 Component-based middleware

 To overcome limitations from distributed object middleware
 (Implicit dependency) : Object interfaces do not describe what

the implementation of an object depends on, making object-
based systems difficult to develop (especially for third-party
developers) and subsequently manage

 (Programming complexity) : Programming distributed object
middleware leads to a need to master a many low-level details
associated with middleware implementation

 (Lack of separation of distribution concerns) : Application
developers are obliged to consider details of concerns such as
security, failure handling and concurrency, which are largely
similar from one application to another

 (No support for deployment) : Object-based middleware
provides little or no support for the deployment of configurations
of objects

 Enterprise JavaBeans and Fractal

Web Services

 Provides a service interface enabling clients to interact
with servers in a more general way than web browsers
do.

 Clients access the operations in the interface of a web
service by means of requests and replies formatted in
XML and usually transmitted over HTTP.

 Identified by a URI(Uniform Resource Identifier)
 A string of characters designed for unambiguous identification

of resources
 The most common form of URI is the Uniform Resource Locator

(URL), frequently referred to informally as a web address.

 Easily used in Internet-wide applications

Web Services

 SOAP (Simple Object Access Protocol)
 A messaging protocol specification for exchanging structured

information in the implementation of web services in computer
networks

 Its purpose is to induce extensibility, neutrality and
independence.

 Uses XML Information Set for its message format, and
 Relies on application layer protocols, most often Hypertext

Transfer Protocol (HTTP) or Simple Mail Transfer Protocol
(SMTP), for message negotiation and transmission.

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

Figure 9-1. Web services infrastructure and components

Web Services 1.B. Communication Paradigms

1. Inter-Process Communication (IPC)
2. Remote Invocation
3. Indirect Communication

Inter-Process Communication

 Relatively low-level support for communication
between processes, including message-passing
primitives, direct access to the API offered by Internet
protocols (socket programming)

 Process: program running within a host
 Within same host, two processes communicate using inter-

process communication (IPC) (defined by OS)
 Processes in different hosts communicate by exchanging

messages

 Client process
 Process that initiates communication

 Server process
 Process that waits to be contacted Application Layer

 Process sends/receives messages to/from its socket
 Socket analogous to door

 Sending process shoves message out door
 Sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket Programing

Remote Invocation

The most common communication paradigm
1. Request-reply protocols

 A pattern imposed on an underlying message-passing service
to support client-server computing

 Rather primitive and only really used in embedded systems,
also used in the HTTP protocol

2. Remote procedure calls (RPC)
 Calls as if they are procedures in the local address space
 Hides important aspects of distribution
 Offers (at a minimum) access and location transparency

3. Remote method invocation (RMI)
 Resembles RPCs but in a world of distributed objects

Applications

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

UDP and TCP

Remote invocation, indirect communication

Figure 5-1. Middleware Layers

Remote Invocation

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

Figure 5-2. Request-Reply Communication

Remote Invocation Indirect Communication

 Through a third entity, allowing a strong degree of
decoupling between senders and receivers
 Space uncoupling - senders do not need to know who they are

sending to
 Time uncoupling - senders and receivers do not need to exist

at the same time

Figure 6-1. Space and Time Coupling in Distributed Systems

Indirect Communication Indirect Communication

1. Group Communication
 Multiparty communication paradigm supporting one-to-many

communication
 Senders send messages to the group via the group identifier,

and hence do not need to know the recipients of the message

2. Publish-Subscribe Systems
 Information-dissemination systems
 A large number of producers (or publishers) distribute

information items of interest (events, topic in Kafka) to a
similarly large number of consumers (or subscribers)

 Offer a one-to-many style of communication

3. Message Queues
 Offer a point-to-point service
 Queues offer an indirection between the producer and

consumer processes

4. Tuple Spaces
 Processes can place arbitrary items of structured data, called

tuples, in a persistent tuple space
 Other processes can either read or remove such tuples from the

tuple space by specifying patterns of interest

5. Distributed Shared Memory(DSM)
 Provide an abstraction for sharing data between processes that

do not share physical memory.
 The underlying infrastructure must ensure a copy is provided in a

timely manner and also deal with issues relating to
synchronization and consistency of data

Indirect Communication Publish-Subscribe Paradigm

Figure 6-8. The Publish-Subscribe Paradigm

Publish-Subscribe Architecture

Figure 6-10. The Architecture of Publish-Subscribe Systems
Figure 6-9. A Network of Brokers

Broker Network

Figure 6-14. The Message Queue Paradigm

Message Queue Paradigm

Figure 6-19. The Distributed Shared Memory (DSM) Abstraction

Distributed Shared Memory

1.C. Roles and Responsibilities

 Two architectural styles stemming from the role of
individual processes

1. Client-Server architectural style
2. Peer-to-Peer architectural style

Client-Server Architecture

 Client-Server Architectural Style
 Client processes interact with individual server processes in

potentially separate host computers in order to access the shared
resources that they manage

 Servers may in turn be clients of other servers
 Scales poorly

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

Figure 2.3. Clients Invoke Individual Servers

Peer-to-Peer Architecture

 Peer-to-Peer Architectural Style
 All of the processes involved in a task or activity play similar

roles, interacting cooperatively as peers without any distinction
between client and server processes

 All participating processes run the same program and offer the
same set of interfaces to each other

 Recent and widely used instance is the BitTorrent file-sharing
system

Figure 2.4a. Peer-to-Peer Architecture

1.D. Placement

 How entities such as objects or services map on to the
underlying physical distributed infrastructure

 A matter of careful design issue
 Placement needs to take into account

 The patterns of communication between entities
 The reliability of given machines
 Their current loading
 The quality of communication between different machines

 Placement must be determined with strong application
knowledge
 There are few universal guidelines to obtaining an optimal

solution

1.D. Placement

1. Multiple servers
2. Caching
3. Mobile code
4. Mobile agents

Multiple Servers

 Services may be implemented as several server
processes in separate host computers

 The servers may partition the set of objects on which
the service is based and distribute those objects
between themselves, or

 They may maintain replicated copies of them on several
hosts

Server

Server

Server

Service

Client

Client
Figure 2.4b. A Service Provided by

Multiple Servers

Caching

 Store recently used data objects that is closer to one
client or a particular set of clients than the objects
themselves

 May be co-located with each client
 Web browsers maintain a cache of recently visited web pages and

other web resources in the client’s local file system

 May be located in a proxy server that can be shared by
several clients
 The purpose of proxy servers is to increase the availability and

performance of the service by reducing the load on the wide area
network and web servers

Caching

Figure 2.5. Web Proxy Server

Client

Proxy

Web

server

Web

server

server
Client

Mobile Code

 Applets are a well-known and widely used example of
mobile code
 The user running a browser selects a link to an applet whose

code is stored on a web server
 The code is downloaded to the browser and runs there

 Give good interactive response since it does not suffer
from the delays or variability of bandwidth

 Potential security threat to the local resources

Mobile Code

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

Figure 2.6. Web Applets

Mobile Agents

 A running program (including both code and data) that
 Travels from one computer to another in a network
 Carrying out a task on someone’s behalf, such as

collecting information, and
 Eventually returning with the results
 May make many invocations to local resources at each

site it visits – for example, accessing individual database
entries

 Potential security threat to the resources in computers
that they visit

2. Architectural Patterns

 Build on the more primitive architectural elements
 Used in isolation or, more commonly, in combination, in

developing more sophisticated distributed systems
solutions

 Not themselves necessarily complete solutions but rather
offer partial insights that, when combined with other
patterns, lead the designer to a solution for a given
problem domain
A. Layering
B. Tiered Architecture
C. Thin Clients
D. Other commonly occurring patterns: proxy, brokerage,

Reflection

2.A. Layering

 Deals with the vertical organization of services into
layers of abstraction

 A complex system is partitioned into a number of
layers, with a given layer making use of the services
offered by the layer below.

 A given layer therefore offers a software abstraction,
with higher layers being unaware of implementation
details, or indeed of any other layers beneath them

2.A. Layering

 Platform
 Consists of the lowest-level hardware and software layers

 Middleware
 A layer of software whose purpose is to mask heterogeneity and to

provide a convenient programming model to application
programmers

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Figure 2.7 Software and Hardware
Service Layers in Distributed
Systems

2.B. Tiered Architecture

 Organize functionality of a given layer and place this
functionality into appropriate servers and, as a secondary
consideration, on to physical nodes

 Functional decomposition of a given application
 Presentation logic (presentation tier)

 Concerned with handling user interaction and updating the view
of the application as presented to the user

 Application logic (application tier or business tier)
 Concerned with the detailed application-specific processing

associated with the application
 Also referred to as the business logic, although the concept is

not limited only to business applications

 Data logic (data tier)
 Concerned with the persistent storage of the application, typically

in a database management system
52

Two-Tier and Three-Tier Architectures

Two-Tier Architecture

 Two-tier solution
 Three aspects must be partitioned into two processes, the

client and the server
 Splitting the application logic, with some residing in the client

and the remainder in the server
 Low latency in terms of interaction

Three-Tier Architecture

 Three-tier solution
 Presentation logic tier can also be a simple user interface

allowing intrinsic support for thin clients
 Application logic tier is held in one place

 Enhance maintainability of the software

 Data logic tier is simply a database offering a (potentially
standardized) relational service interface

 Added complexity of managing three servers and also the added
network traffic and latency

 Generalizes to n-tiered (or multi-tier) solutions

AJAX

 The role of AJAX (Asynchronous JavaScript And XML)
 An extension to the standard client-server style of interaction

used in the WWW
 Meets the need for fine-grained communication between a

Javascript front-end program running in a web browser and a
server-based back-end program holding data describing the
state of the application

 Constitutes an effective technique for the construction of
responsive web applications in the context of the
indeterminate latency of the Internet

AJAX

 The role of AJAX (Asynchronous JavaScript And XML)
 In the standard web style of interaction

 A browser sends an HTTP request to a server for a page, image or
other resource with a given URL.

 The server replies by sending an entire page that is either read from
a file on the server or generated by a program

 When the resultant content is received at the client, the browser
presents it according to the relevant display method for its MIME
type

AJAX

 The role of AJAX (Asynchronous JavaScript And XML)
 This standard style of interaction constrains the development

of web applications
 Once the browser has issued an HTTP request for a new web

page, the user is unable to interact with the page until the new
HTML content is received and presented by the browser.

 In order to update even a small part of the current page with
additional data from the server, an entire new page must be
requested and displayed. This results in a delayed response to
the user, additional processing at both the client and the server
and redundant network traffic.

 The contents of a page displayed at a client cannot be updated
in response to changes in the application data held at the server.

AJAX

 The role of AJAX (Asynchronous JavaScript And XML)
 AJAX is the ‘glue’ that supports the construction of such

applications
 It provides a communication mechanism enabling front-end

components running in a browser to issue requests and receive
results from back-end components running on a server.

new Ajax.Request('scores.php?
game=Arsenal:Liverpool’,

{onSuccess: updateScore});
function updateScore(request) {
.....

(request contains the state of the Ajax request including the returned result.
The result is parsed to obtain some text giving the score, which is used
to update the relevant portion of the current page.)

.....
}

Figure 2.9 AJAX Example: Soccer Score Updates

What is AJAX?

 Classic model is
inefficient
 All page content

disappeared then
reappeared

 Each time a page was
reloaded due to a
partial change, all of the
content had to be re-
sent, even though only
some of the information
had changed

 Additional load on the
server and excessive
bandwidth

2.C. Thin Clients

 The trend is towards moving complexity away from the end-user
device towards services in the network
 Apparent in cloud computing and in tiered architectures

 A software layer that supports a window-based user interface that
is local to the user while executing application programs or, more
generally, accessing services on a remote computer

Thin
Client

Application
Process

Network computer or PC
Compute server

network

Figure 2.10 Thin Clients and Compute Servers

2.C. Thin Clients

 Advantage and Drawback
 Potentially resource-constrained local devices can be

significantly enhanced with sophisticated networked services
and capabilities

 In highly interactive graphical activities, where the delays
experienced by users are increased to unacceptable levels
 By the need to transfer image and vector information between the

thin client and the application process
 Due to both network and operating system latencies

2.D. Other Commonly Occurring Patterns

1. Proxy
2. Broker

Proxy

 Proxy
 Designed particularly to support location transparency in RPC

or RMI
 A proxy is created in the local address space to represent the

remote object
 The proxy offers exactly the same interface as the remote

object
 The programmer makes calls on this proxy object and hence

does not need to be aware of the distributed nature of the
interaction.

Broker

 Broker
 The use of brokerage in web services can usefully be viewed as

an architectural pattern supporting interoperability in
potentially complex distributed infrastructures

 Consists of the trio of service provider, service requester and
service broker (a service that matches services provided to
those requested)

 Replicated in many areas of distributed systems, for example
with the registry in Java RMI and the naming service in CORBA

Figure 2.11
The Web Service Architectural
Pattern

Broker

 Broker
 Design broker component to decouple clients from servers
 Servers:

 Register with broker
 Present method interfaces to clients

 Clients
 Access server’s methods via broker
 Uses same form to call server’s methods

 Brokers
 Locating appropriate server
 Forwarding requests to server
 Transmitting results and exceptions to client

66

3. Associated Middleware Platforms
Middleware provides a higher-level programming abstraction and, through layering,
to abstract over heterogeneity in the underlying infrastructure to promote
interoperability and portability

Figure 2.12
Categories of Middleware

Fundamental Models

 Definition
 Models based on the fundamental properties

 Models of systems so far
 Share some fundamental properties

 All of them are composed of processes

 Share the design requirements of
 Achieving the performance and reliability characteristics of processes

and networks
 Ensuring the security of the resources in the system

 Purpose of models based on the fundamental properties
 To make explicit all the relevant assumptions about the systems

we are modelling
 To make generalizations concerning what is possible or

impossible, given those assumptions.

Interaction Model

 Many processes are interacting in complex ways
 Multiple server processes may cooperate with one another to

provide a service
 A set of peer processes may cooperate with one another to

achieve a common goal

 Algorithm
 A sequence of steps to be taken in order to perform a desired

computation
 Simple programs are controlled by algorithms in which the

steps are strictly sequential
 The behavior of the program and the state of the program’s

variables is determined by the algorithms
 Such a program is executed as a single process

Interaction model

 Distributed Algorithm
 Distributed systems composed of multiple processes
 Their behaviour and state can be described by a distributed

algorithm
 A definition of the steps to be taken by each of the processes,

including the transmission of messages between them
 Messages are transmitted between processes to transfer

information between them and to coordinate their activity

 The rate at which each process proceeds and the timing of the
transmission of messages between them cannot in general be
predicted.

 Two significant factors affecting interacting processes :
 Communication performance is often a limiting characteristic
 It is impossible to maintain a single global notion of time

70

Performance Characteristics of
Communication Channels

 Latency
 The delay between the start of a message’s transmission from

one process and the beginning of its receipt by another
process
 The time taken for the first of a string of bits transmitted through

a network to reach its destination
 The delay in accessing the network

 Increases significantly when the network is heavily loaded

 The time taken by the operating system communication services at
both the sending and the receiving processes

 bandwidth
 Total amount of information that can be transmitted over it in

a given time

 Jitter
 The variation in the time taken to deliver a series of messages
 Relevant to multimedia data

