
Fault Tolerance

527950-1
Fall 2019

12/12/2019
Kyoung Shin Park

Applied Computer Engineering
Dankook University

Overview

 Fault Tolerance Basic Concepts
 Process Resilience
 Reliable Communications
 Distributed Commit
 Recovery

Failure

 In distributed systems,
 Partial failure may happen when one component fails
 This failure may affect some of the components
 While at the same time, leaves other components totally

unaffected

 In non-distributed systems (e.g., single machine
system),
 A failure often affects all components
 This may easily bring down the entire system

Fault Tolerance and Recovery

 An important goal in distributed systems is,
 Automatically recover from partial failures without seriously

affecting overall performance
 If a failure occurs, the system should continue to operate, while

repair is being made.
 In other words, it should tolerate faults and continue to

operate

Dependability

 Fault tolerance is strongly related to what are called
dependable systems

 Dependability implies the following:
1. Availability:

 A system is ready to be used immediately – System is up and
running at any given moment (%)

2. Reliability
 A system can run continuously without failure – System continues

to function for a long period of time (time)

3. Safety
 If a system fails, nothing catastrophic will happen - Low

probability of catastrophes (effect)

4. Maintainability
 When a system fails, it can be repaired easily and quickly (and,

sometimes, without its users noticing the failure)

What is Failure?

 A system is said to “fail” when it cannot meet its
promises (specifications).

 A failure is brought about by the existence of “errors”
in the system.

 The cause of an error is a “fault”.

Types of Faults

 Faults can be
 Transient

 Occur once and then disappear

 Intermittent
 Occur, then vanish, then reappear occurs, but: follows no real

pattern (worst kind)

 Permanent
 Continues to exist. Once it occurs, only the replacement/repair of a

faulty component will allow the distributed system to function
normally.

Failure Models

 Different types of failures

 Note: Crash failures are the least severe; arbitrary
failures are the worst

Fault Handling Approaches

 Fault prevention
 Prevent the occurrence of a fault

 Fault tolerance
 A system can provide its services in the presence of faults

(i.e., mask the presence of faults)

 Fault removal
 Reduce the presence, number, seriousness of faults

 Fault forecasting
 Estimate the present number, future incidence, and the

consequences of faults

Approaches to Fault Tolerance

 No fault tolerance without redundancy
 Failure masking by redundancy

 Use redundancy to mask a failure, i.e., hide the occurrence of a
fault

Failure Masking by Redundancy

 Strategy: hide the occurrence of failure from other
processes using redundancy.

 3 types of failure masking by redundancy
 Information redundancy

 E.g., FEC (Forward Error Correction): a code can be added to
transmitted data to recover from packet error

 Time redundancy
 Performed again: retransmission in TCP/IP
 Especially helpful for transient or intermittent faults.

 Physical redundancy
 Software (process replication), Hardware (biology, aircraft, sports,

electronic circuits)
 E.g., 747s have four engines but can fly on three

Physical Redundancy

 Active replication is a technique for achieving fault
tolerance through physical redundancy.
a. No redundancy

b. Triple modular redundancy

Process Resilience

 Organizing replicated processes into a group
 Processes can be made fault tolerant by arranging to

have a group of processes, with each member of the
group being identical.

 A message sent to the group is delivered to all of the
“copies” of the process (the group members), and
then only one of them performs the required service.

 If one of the processes fail, it is assumed that one of the
others will still be able to function (and service any
pending request or operation

Flat Groups versus Hierarchical Groups

 Group organization
a. Communication in a flat group.
b. Communication in a simple hierarchical group.

Flat Groups versus Hierarchical Groups

a. Communication in a flat group.
 All the processes are equal, decisions are made collectively.
 Note: no single point-of-failure, however decision making is

complicated as consensus is required.
 Good for fault tolerance as information exchange

immediately occurs with all group members

b. Communication in a simple hierarchical group.
 One of the processes is elected to be the coordinator, which

selects another process (a worker) to perform the operation.
 Note: single point-of failure, however decisions are easily and

quickly made by the coordinator without first having to get
consensus.

 Not really fault tolerant or scalable

Process Replication

 Replicate a process and group replicas in one group
 How many replicas do we create?
 A system is k fault tolerant if it can survive faults in k

components and still meet its specifications.
 For crash failure model (a faulty process halts, but is working

correctly until it halts)
⇒ Need k + 1 (k can fail and one will still be working)
 For arbitrary/Byzantine failure model (a faulty process may

produce arbitrary responses at arbitrary times) and group
output defined by voting collected by the client

⇒ Need 2k + 1 (k can generate false replies and k + 1 will
provide a majority vote)
 Assume that all members are identical and process all input in

the same order

Agreement in Faulty Systems

 Distributed agreement algorithms
 All non-faulty processes reach consensus on some issue, and

to establish that consensus within a finite number of steps.

 Possible cases
1. Synchronous versus asynchronous systems

 A system is synchronous if and only if the processes are known
to operate in a lock-step mode.

2. Communication delay is bounded or not.
 Delay is bounded if and only if we know that every message is

delivered with a globally and predetermined maximum time.

3. Message delivery is ordered or not.
 Messages from the same sender are delivered in the order that

they were sent vs no such guarantees.

4. Message transmission is done through unicasting or
multicasting.

Agreement in Faulty Systems

 Circumstances under which distributed agreement can
be reached.

Byzantine Agreement Problem

 Byzantine agreement problem by Lamport et al.
(1982)
 A.k.a Byzantine generals problem
 Assume that processes are synchronous, messages are unicast

while preserving ordering and communication delay is
bounded.

 Proved that in a system with k faulty processes, agreement can
be achieved only if 2k+ 1 correctly functioning processes are
present, for a total of 3k + 1.

 Agreement is possible only if more than two-thirds of the
processes are working properly.

⇒ Need 3k + 1 members for k traitors (2k + 1 loyalists) i.e., a
majority vote among the group of loyalists, in the presence of k
traitors

Byzantine Agreement Problem (1)

 The Byzantine agreement problem for three non-
faulty and one faulty process.
a. Each process sends their value to the others.

Byzantine Agreement Problem (1)

 The Byzantine agreement problem for three non-
faulty and one faulty process.
b. The vectors that each process assembles based on (a).
c. The vectors that each process receives in step 3.

Byzantine Agreement Problem (2)

 The same as previous, except now with two correct
process and one faulty process.
 Given three processes, if one fails, consensus is impossible.

Agreement

 Two generals problem
 Perfect processes, faulty communication channels
 A.k.a. Two armies problem or Coordinated attack problem
 Multiple acknowledgement problem

 Byzantine generals problem
 Faulty processes, perfect communication channels
 In essence, we are trying to reach a majority vote among the

group of loyalists, in the presence of k traitors
⇒ Need 3k + 1 members for k traitors (2k + 1 loyalists) (Lamport,
1982)

Failure Detection

 Detecting (process) failures
 Processes actively send “are you alive?” (active pinging)

messages to each other (for which they obviously expect an
answer)

 Processes passively wait until messages come in from different
processes.

 Detect failures through timeout mechanisms
 Setting timeouts properly is difficult and application dependent
 False positive: cannot distinguish process failures from network

failures
 Solutions?

Communication Failure

 Until now, we discussed only faulty processes
 However, communication channel may exhibit

 Crash (system halts)
 Omission (incoming request ignored)
 Timing (responding too soon or too late)
 Response (getting the order wrong)
 Arbitrary/Byzantine (indeterminate, unpredictable) failures

 We need to mask these failures
 Arbitrary communication failures

 Duplicate messages – why?

Reliable Communication

 Error detection
 Framing of packets and using checksum (e.g., CRC) to allow

for bit error detection
 Use of frame numbering to detect which packet was lost

 Error correction
 Add redundancy bits so that corrupted packets can be

automatically corrected
 Request retransmission of lost packets

Reliable RPC

 RPC hides communication by making remote procedure
calls look just like local ones
 When errors occur it is not always easy to mask the difference

between local and remote calls

 Five classes of failures can occur in RPC
1. The client cannot locate the server, so no request can be sent.
2. The client’s request to the server is lost, so no response is

returned by the server to the waiting client.
3. The server crashes after receiving a request, and the service

request is left acknowledged, but undone.
4. The server’s reply is lost on its way to the client, so the

service has completed, but the results never arrive at the client.
5. The client crashes after sending its request, and the server

sends a reply to a newly-restarted client that may not be
expecting it.

RPC Failures

1. Client cannot locate server
 All servers might be down
 Server is upgraded unknowingly to the client
 Deal with the failure – have the error raise exceptions (e.g.,

Java) to solve the problem

2. Client request is lost
 OS or client stub starts a timer after sending request
 If timer expires before reply comes back, retransmit request
 After so many requests are lost, the client gives up

 Difference between first case?

3. Server crashes
4. Server response is lost
5. Client crashes

Server Crashes

 Client cannot tell if server crash occurred before or
after the request is carried out.

a. The normal case
b. Server crash after execution
c. Server crash before execution

Server Crashes Semantics

 Server crashes are dealt with by implementing one of
three possible philosophies
 At least once semantics

 A guarantee is given that the RPC occurred at least once, but
(also) possibly more that once.

 At most once semantics
 A guarantee is given that the RPC occurred at most once, but

possibly not at all.

 No semantics
 Nothing is guaranteed, and client and servers take their chances!

 It has proved difficult to provide exactly once
semantics.

Printing Server Example

 Printing Server
 Remote operation prints some text at server
 Server sends completion message after text is printed
 Client issues request and receives acknowledgement

 Assumption
 Server crashes and subsequently recovers
 Server announces to all clients that it just crashed but it is up

and running again
 Problem: Client doesn’t know whether printing was actually

carried out

 Three events that can happen at the server
 Send the completion message (M),
 Print the text (P),
 Crash (C).

Printing Server Example

 These events can occur in six different orderings:
1. MPC M →P →C: A crash occurs after sending the completion

message and printing the text.
2. MC(P) M →C (→P): A crash happens after sending the

completion message, but before the text could be printed.
3. PMC P →M →C: A crash occurs after sending the completion

message and printing the text.
4. PC(M) P→C(→M): The text printed, after which a crash occurs

before the completion message could be sent.
5. C(PM) C (→P →M): A crash happens before the server could

do anything.
6. C(MP) C (→M →P): A crash happens before the server could

do anything.

Printing Server Example

 Different combinations of client and server

Server Response is Lost

 Lost replies
 Detection is hard – only way is request timeout
 It can also be that request is lost or the server had crashed.
 Don't know whether the server has carried out the operation

 Examples:
 File read(idempotent) vs. bank transfer(nonidempotent)

 Solutions
 Try to make your operations idempotent - repeatable

without any harm done if it happened to be carried out
before

 Nonidempotent requests are a little harder to deal with.
 A common solution is to employ unique sequence numbers
 Another technique is the inclusion of additional bits in a

retransmission to identify it as such to the server.

Client Crashes

 Client crashes
 When a client crashes, and when an ‘old’ reply arrives, such a reply

is known as an orphan.

 Orphan solutions
 Extermination

 The client explicitly kills off the orphan if it is received

 Reincarnation
 When a client reboots, it broadcasts a new epoch number. When

server receives the broadcast, it kills the computations that were
running on behalf of the client

 Expiration
 Each RPC is associated with an expiration time T.
 The call is aborted when the expiration time is reached
 If RPC cannot finish within T, the client must asks for another quantum
 If after a crash the client waits a time T before rebooting, all orphans

are sure to be gone

Reliable Multicast

 Unicast vs. Multicast vs. Broadcast?
 Reliable unicast

 Transport layers (e.g., TCP) offer reliable point-to-point
communication

 Reliable multicast
 Guarantee that all messages are delivered to all members

in a process group
 Multiple reliable point-to-point communications

 Scalability?

 Basic reliable-multicasting

Basic Reliable-Multicasting Schemes

 A simple solution to reliable multicasting when all
receivers are known and are assumed not to fail.
a. Message transmission – note that the 3rd receiver is expecting 24
b. Reporting feedback – the 3rd receiver informs the sender

Reliable Multicasting Scalability

 Single sender, N receivers
 Sender must accept at least N ACKs
 If N is large, sender may be swamped with feedback messages

– feedback implosion

 Using only NACKs
 Receiver does not send ACK for message reception
 Receiver only sends NACK for missing message
 Better scalability (since ACKs are not sent)
 Problems?

 One step further: Scalable reliable multicasting

Nonhierarchical Feedback Control

 Several receivers have scheduled a request for
retransmission, but the first retransmission request
leads to the suppression of other feedbacks.

Hierarchical Feedback Control

 Hierarchical reliable multicasting
 The essence is that it supports the creation of very large groups
 Each local coordinator forwards the message to its children and

later handles retransmission requests.
 A local coordinator handles retransmission requests locally, using

any appropriate multicasting method for small groups.

Reliable Multicasting Scalability

 Simple reliability
 No messages lost

 In the presence of process failures
 What does reliable delivery mean in the presence of process

failures?
 If a process fails it cannot receive the message

 Atomic Multicast
 Atomic multicasting ensures that non-faulty processes maintain a

consistent view of the database, and forces reconciliation when a
replica recovers and rejoins the group.

 Virtually synchronous
 Guarantee that message is delivered to either all non-faulty

processes or none at all

 Message ordering
 All messages are delivered in the same order to all processes

Virtual Synchrony

 Model for group management and group
communication
 A process can join or leave a group
 A process can send a message to a group

 Ordering requirements defined by programmer

 Atomic multicast
 “A message is either delivered to all processes in the group or

to none”

Virtual Synchrony System Model

 The logical organization of a distributed system to
distinguish between message receipt and message
delivery.

Virtual Synchrony

 The principle of virtual synchronous multicast

Implementing Virtual Synchrony

 Six different versions of virtually synchronous reliable
multicasting.

Implementing Virtual Synchrony

a. P4 notices that P7 has crashed and sends a view change
b. P6 sends out all its unstable messages, followed by a

flush message
c. P6 installs the new view when it has received a flush

message from everyone else

Message Ordering
 Virtually synchronous behavior is independent from the

ordering of message delivery.
 The only issue is that messages are delivered to an agreed upon

group of receivers.
 Four different orderings

1. Unordered multicasts
 No guarantees are given concerning the order in which received

messages are delivered by different processes

2. FIFO-ordered multicasts
 The communication layer is forced to deliver incoming messages

from the same process in the same order as they have been sent

3. Causally-ordered multicasts
 Delivers messages so that potential causality between different

messages is preserved

4. Totally-ordered multicasts
 It is required additionally that when messages are delivered, they

are delivered in the same order to all group members.

Un-Ordered Multicast

 Three communicating processes in the same group.
 The ordering of events per process is shown along the

vertical axis.

FIFO-Ordered Multicast

 Four processes in the same group with two different
senders, and a possible delivery order of messages
under FIFO-ordered multicasting

Message Ordering

 Causally-ordered multicasts
 If m1->m2 (causally related), then always deliver m2 after it

has delivered m1
 Use logical clocks (vector clocks)

 Totally-ordered multicasts
 The message is delivered in the same order to all group

members (regardless of the sending order)
 Somewhat analogous to sequential consistency

 Virtually synchronous reliable multicasting offering
totally-ordered delivery is called atomic multicasting.

Distributed Commit

 A more general problem of atomic multicast
 Definition:

 Having an operation performed by all group members or none
at all

 In reliable multicast, operation is delivery of message

 There are three types of “commit protocol”
 Single-phase, Two-phase and Three-phase commit.

One Phase Commit

 One phase commit protocol
 An elected co-ordinator tells all the other processes whether or

not to locally perform the operation in question.
 But, what if a process cannot perform the operation?
 There’s no way to tell the coordinator!
 The solutions: Two-Phase and Three-Phase Commit Protocols

Two Phase Commit

 Goal:
 Reliably agree to commit or abort a collection of sub-

transactions

 All processes in the transaction will agree to commit or
abort

 One transaction manager is elected as a coordinator –
the rest are participants

 Assume
 Write-ahead log in stable storage
 No system dies forever
 Systems can always communicate with each other

Two Phase Commit

 Model:
 The client who initiated the computation acts as coordinator;

processes required to commit are the participants

 Phase 1: Voting Phase
 Coordinator sends vote-request to participants (also called a

pre-write)
 When participant receives vote-request it returns either vote-

commit or vote-abort to coordinator. If it sends vote-abort, it
aborts its local computation

 Phase 2: Commit Phase
 Coordinator collects all votes; if all are vote-commit, it sends

global-commit to all participants, otherwise it sends global-
abort

 Each participant waits for global-commit or global-abort and
handles accordingly.

Two-Phase Commit

The finite state machine for
the coordinator in 2PC

The finite state machine for
a participant

Two-Phase Commit

 Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

Two-Phase Commit

 The steps taken by the coordinator in a two-phase
commit protocol.

Two-Phase Commit

 The steps taken by the coordinator in a two-phase
commit protocol.

Two-Phase Commit

 The steps taken
by a participant
process in 2PC.

Two-Phase Commit

 The steps for handling incoming decision requests..

2PC Dealing with Failure

 2PC assumes a fail-recover model
 Any failed system will eventually recover

 A recovered system cannot change its mind
 If a node agreed to commit and then crashed, it must be

willing and able to commit upon recovery

 Each system will use a write-ahead (transaction) log
 Keep track of where it is in the protocol (and what it agreed to)
 As well as values to enable commit or abort (rollback)
 This enables fail-recover

2PC Dealing with Failure

 Failure during Phase 1 (voting)
 Coordinator dies

 Some participants may have responded; others have no clue
⇒ Coordinator restarts; checks log; sees that voting was in progress
⇒ Coordinator restarts voting

 Participant dies
 The participant may have died before or after sending its vote to

the coordinator
⇒ If the coordinator received the vote, wait for other votes and go
to phase 2
⇒ Otherwise: wait for the participant to recover and respond (keep
querying it)

2PC Dealing with Failure

 Failure during Phase 2 (commit)
 Coordinator dies

 Some participants may have given commit/abort instructions
⇒ Coordinator restarts; checks log; informs all participants of
chosen action

 Participant dies
 The participant may have died before or after getting the

commit/abort request
⇒ Coordinator keeps trying to contact the participant with the
request
⇒ Participant recovers; checks log; gets request from coordinator

 If it committed/aborted, acknowledge the request
 Otherwise, process the commit/abort request and send back the

acknowledgement

Adding a Recovery Coordinator

 Another system can take over for the coordinator
 Could be a participant that detected a timeout to the

coordinator

 Recovery node needs to find the state of the protocol
 Contact ALL participants to see how they voted
 If we get voting results from all participants

 We know that Phase 1 has completed
 If all participants voted to commit, send commit request
 Otherwise send abort request

 If ANY participant states that it has not voted
 We know that Phase 1 has not completed, restart the protocol

 But … if a participant node also crashes, we’re stuck!
 Have to wait for recovery

Blocking Commit Protocol

 What’s wrong with the 2PC protocol?
 Biggest problem: It’s a blocking protocol

 If the coordinator crashes, the group members may not be
able to reach a final decision, and they may, therefore, block
until the coordinator recovers
 A recovery coordinator helps in some cases

 A non-responding participant will also result in blocking

 When a participant gets a commit/abort message, it
does not know if every other participant was informed
of the result.

 The solution: Three-Phase Commit Protocol

Three-Phase Commit

 Same setup as the two-phase commit protocol:
 Coordinator & Participants

 Enable the use of a recovery coordinator
 Propagate the result of the commit/abort vote to each

participant before telling them to act on it
 This will allow us to recover the state if any participant dies

 Add timeouts to each phase that result in an abort
 If the coordinator crashes – A recovery node can query

the state from any available participant

Three-Phase Commit

The finite state machine for
the coordinator in 3PC

The finite state machine for
a participant

Three Phase Commit

 Phase 1: Voting phase
 Coordinator sends canCommit? queries to participants & gets

responses
 Purpose: Find out if everyone agrees to commit
 If the coordinator gets a timeout from any participant, or any

NO replies are received, send an abort to all participants
 If a participant times out waiting for a request from the

coordinator, it aborts itself (assume coordinator crashed)
 Else continue to phase 2

Three-Phase Commit

 Phase 2: ”Prepare to commit” phase
 Send Prepare message to all participants when it received a

yes from all participants in phase 1
 Participants can prepare to commit but cannot do anything

that cannot be undone
 Participants reply with an acknowledgement
 Purpose: Let every participant know the state of the result of

the vote so that state can be recovered if anyone dies
 If the coordinator gets a timeout (assume participant crashed),

send an abort to all participants - The coordinator cannot
count on every participant having received the Prepare
message

Three-Phase Commit

 Phase 3: “Commit” phase (same as in 2PC)
 If coordinator gets ACKs for all prepare messages, it will send a

commit message to all participants
 Else it will abort – It will send an abort message to all

participants
 If participant times out, contact any other participant and move

to that state (commit or abort)
 If coordinator times out, that’s ok

3PC Recovery

 Possible states that the participant may report
 Already committed

 That means that every other participant has received a Prepare to
Commit

 Some participants may have committed
 Send Commit message to all participants (just in case they didn’t get

it)

 Not committed but received a Prepare message
 That means that all participants agreed to commit; some may have

committed
 Send Prepare to Commit message to all participants (just in case

they didn’t get it)
 Wait for everyone to acknowledge; then commit

 Not yet received a Prepare message
 This means no participant has committed; some may have agreed
 Transaction can be aborted or the commit protocol can be restarted

3PC Weaknesses

 Main weakness of 3PC
 May have problems when the network gets partitioned
 Partition A: nodes that received Prepare message

 Recovery coordinator for A: allows commit

 Partition B: nodes that did not receive Prepare message
 Recovery coordinator for B: aborts

 Either of these actions are legitimate as a whole
 But when the network merges back, the system is inconsistent

 Not good when a crashed coordinator recovers
 It needs to find out that someone took over and stay quiet
 Otherwise it will mess up the protocol, leading to an

inconsistent state

3PC Coordinator Recovery Problem

 Suppose
 A coordinator sent a Prepare message to all participants
 All participants acknowledged the message
 BUT the coordinator died before it got all acknowledgements

 A recovery coordinator queries a participant
 Continues with the commit: Sends Prepare, gets ACKs, sends

Commit

 Around the same time…the original coordinator recovers
 Realizes it is still missing some replies from the Prepare
 Times out and decides to send an Abort to all participants

 Some processes may commit while others abort!
 3PC works well when servers crash (fail-stop model)
 3PC is not resilient against fail-recover environments

References

 http://csis.pace.edu/~marchese/CS865/Lectures/Chap8/
New8/Chapter8.html

 https://www.cs.rutgers.edu/~pxk/rutgers/notes/content/f
ault-tolerance-slides.pdf

 https://www.cs.rutgers.edu/~pxk/417/notes/content/10-
virtual_synchrony-slides.pdf

 https://www.cs.rutgers.edu/~pxk/417/notes/content/11-
transactions-slides.pdf

 https://www.cs.rutgers.edu/~pxk/417/notes/content/12-
paxos-slides.pdf

