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Overview

 Fault Tolerance Basic Concepts
 Process Resilience
 Reliable Communications
 Distributed Commit
 Recovery

Failure

 In distributed systems, 
 Partial failure may happen when one component fails
 This failure may affect some of the components 
 While at the same time, leaves other components totally 

unaffected

 In non-distributed systems (e.g., single machine 
system), 
 A failure often affects all components 
 This may easily bring down the entire system

Fault Tolerance and Recovery

 An important goal in distributed systems is, 
 Automatically recover from partial failures without seriously 

affecting overall performance 
 If a failure occurs, the system should continue to operate, while 

repair is being made. 
 In other words, it should tolerate faults and continue to 

operate 



Dependability

 Fault tolerance is strongly related to what are called 
dependable systems

 Dependability implies the following:
1. Availability: 

 A system is ready to be used immediately – System is up and 
running at any given moment (%)

2. Reliability
 A system can run continuously without failure – System continues 

to function for a long period of time (time) 

3. Safety
 If a system fails, nothing catastrophic will happen - Low 

probability of catastrophes (effect)

4. Maintainability
 When a system fails, it can be repaired easily and quickly (and, 

sometimes, without its users noticing the failure)

What is Failure?

 A system is said to “fail” when it cannot meet its 
promises (specifications).

 A failure is brought about by the existence of “errors” 
in the system.

 The cause of an error is a “fault”.

Types of Faults

 Faults can be
 Transient

 Occur once and then disappear 

 Intermittent
 Occur, then vanish, then reappear occurs, but: follows no real 

pattern (worst kind)

 Permanent
 Continues to exist. Once it occurs, only the replacement/repair of a 

faulty component will allow the distributed system to function 
normally.

Failure Models

 Different types of failures 

 Note: Crash failures are the least severe; arbitrary 
failures are the worst



Fault Handling Approaches

 Fault prevention
 Prevent the occurrence of a fault 

 Fault tolerance
 A system can provide its services in the presence of faults 

(i.e., mask the presence of faults) 

 Fault removal
 Reduce the presence, number, seriousness of faults 

 Fault forecasting
 Estimate the present number, future incidence, and the 

consequences of faults

Approaches to Fault Tolerance

 No fault tolerance without redundancy
 Failure masking by redundancy

 Use redundancy to mask a failure, i.e., hide the occurrence of a 
fault 

Failure Masking by Redundancy

 Strategy: hide the occurrence of failure from other 
processes using redundancy.

 3 types of failure masking by redundancy
 Information redundancy 

 E.g., FEC (Forward Error Correction): a code can be added to 
transmitted data to recover from packet error 

 Time redundancy 
 Performed again: retransmission in TCP/IP
 Especially helpful for transient or intermittent faults. 

 Physical redundancy 
 Software (process replication), Hardware (biology, aircraft, sports, 

electronic circuits) 
 E.g., 747s have four engines but can fly on three

Physical Redundancy

 Active replication is a technique for achieving fault 
tolerance through physical redundancy. 
a. No redundancy

b. Triple modular redundancy



Process Resilience

 Organizing replicated processes into a group
 Processes can be made fault tolerant by arranging to 

have a group of processes, with each member of the 
group being identical.

 A message sent to the group is delivered to all of the 
“copies” of the process (the group members), and 
then only one of them performs the required service.

 If one of the processes fail, it is assumed that one of the 
others will still be able to function (and service any 
pending request or operation

Flat Groups versus Hierarchical Groups

 Group organization
a. Communication in a flat group. 
b. Communication in a simple hierarchical group.

Flat Groups versus Hierarchical Groups

a. Communication in a flat group. 
 All the processes are equal, decisions are made collectively.
 Note: no single point-of-failure, however decision making is 

complicated as consensus is required.
 Good for fault tolerance as information exchange 

immediately occurs with all group members

b. Communication in a simple hierarchical group.
 One of the processes is elected to be the coordinator, which 

selects another process (a worker) to perform the operation.
 Note: single point-of failure, however decisions are easily and 

quickly made by the coordinator without first having to get 
consensus.

 Not really fault tolerant or scalable

Process Replication

 Replicate a process and group replicas in one group
 How many replicas do we create? 
 A system is k fault tolerant if it can survive faults in k 

components and still meet its specifications.
 For crash failure model (a faulty process halts, but is working 

correctly until it halts) 
⇒ Need k + 1 (k can fail and one will still be working) 
 For arbitrary/Byzantine failure model (a faulty process may 

produce arbitrary responses at arbitrary times) and group 
output defined by voting collected by the client

⇒ Need 2k + 1 (k can generate false replies and k + 1 will 
provide a majority vote) 
 Assume that all members are identical and process all input in 

the same order



Agreement in Faulty Systems

 Distributed agreement algorithms
 All non-faulty processes reach consensus on some issue, and 

to establish that consensus within a finite number of steps.

 Possible cases
1. Synchronous versus asynchronous systems

 A system is synchronous if and only if the processes are known 
to operate in a lock-step mode.

2. Communication delay is bounded or not.
 Delay is bounded if and only if we know that every message is 

delivered with a globally and predetermined maximum time.

3. Message delivery is ordered or not.
 Messages from the same sender are delivered in the order that 

they were sent vs no such guarantees.

4. Message transmission is done through unicasting or 
multicasting.

Agreement in Faulty Systems

 Circumstances under which distributed agreement can 
be reached.

Byzantine Agreement Problem

 Byzantine agreement problem by Lamport et al. 
(1982)
 A.k.a Byzantine generals problem
 Assume that processes are synchronous, messages are unicast

while preserving ordering and communication delay is 
bounded.

 Proved that in a system with k faulty processes, agreement can 
be achieved only if 2k+ 1 correctly functioning processes are 
present, for a total of 3k + 1.

 Agreement is possible only if more than two-thirds of the 
processes are working properly.

⇒ Need 3k + 1 members for k traitors (2k + 1 loyalists) i.e., a 
majority vote among the group of loyalists, in the presence of k 
traitors 

Byzantine Agreement Problem (1)

 The Byzantine agreement problem for three non-
faulty and one faulty process.
a. Each process sends their value to the others.



Byzantine Agreement Problem (1)

 The Byzantine agreement problem for three non-
faulty and one faulty process.
b. The vectors that each process assembles based on (a). 
c. The vectors that each process receives in step 3.

Byzantine Agreement Problem (2)

 The same as previous, except now with two correct 
process and one faulty process.
 Given three processes, if one fails, consensus is impossible.

Agreement

 Two generals problem
 Perfect processes, faulty communication channels
 A.k.a. Two armies problem or Coordinated attack problem
 Multiple acknowledgement problem

 Byzantine generals problem
 Faulty processes, perfect communication channels
 In essence, we are trying to reach a majority vote among the 

group of loyalists, in the presence of k traitors 
⇒ Need 3k + 1 members for k traitors (2k + 1 loyalists) (Lamport, 
1982)

Failure Detection

 Detecting (process) failures 
 Processes actively send “are you alive?” (active pinging) 

messages to each other (for which they obviously expect an 
answer)

 Processes passively wait until messages come in from different 
processes.

 Detect failures through timeout mechanisms 
 Setting timeouts properly is difficult and application dependent 
 False positive: cannot distinguish process failures from network 

failures
 Solutions?



Communication Failure

 Until now, we discussed only faulty processes 
 However, communication channel may exhibit 

 Crash (system halts)
 Omission (incoming request ignored)
 Timing (responding too soon or too late)
 Response (getting the order wrong)
 Arbitrary/Byzantine (indeterminate, unpredictable) failures

 We need to mask these failures
 Arbitrary communication failures

 Duplicate messages – why?

Reliable Communication

 Error detection
 Framing of packets and using checksum (e.g., CRC) to allow 

for bit error detection 
 Use of frame numbering to detect which packet was lost

 Error correction 
 Add redundancy bits so that corrupted packets can be 

automatically corrected
 Request retransmission of lost packets

Reliable RPC

 RPC hides communication by making remote procedure 
calls look just like local ones 
 When errors occur it is not always easy to mask the difference 

between local and remote calls 

 Five classes of failures can occur in RPC
1. The client cannot locate the server, so no request can be sent.
2. The client’s request to the server is lost, so no response is 

returned by the server to the waiting client.
3. The server crashes after receiving a request, and the service 

request is left acknowledged, but undone.
4. The server’s reply is lost on its way to the client, so the 

service has completed, but the results never arrive at the client.
5. The client crashes after sending its request, and the server 

sends a reply to a newly-restarted client that may not be 
expecting it.

RPC Failures

1. Client cannot locate server 
 All servers might be down 
 Server is upgraded unknowingly to the client
 Deal with the failure – have the error raise exceptions (e.g., 

Java) to solve the problem

2. Client request is lost 
 OS or client stub starts a timer after sending request
 If timer expires before reply comes back, retransmit request
 After so many requests are lost, the client gives up

 Difference between first case?

3. Server crashes 
4. Server response is lost
5. Client crashes



Server Crashes

 Client cannot tell if server crash occurred before or 
after the request is carried out.

a. The normal case
b. Server crash after execution
c. Server crash before execution

Server Crashes Semantics

 Server crashes are dealt with by implementing one of 
three possible philosophies 
 At least once semantics

 A guarantee is given that the RPC occurred at least once, but 
(also) possibly more that once. 

 At most once semantics
 A guarantee is given that the RPC occurred at most once, but 

possibly not at all. 

 No semantics
 Nothing is guaranteed, and client and servers take their chances!

 It has proved difficult to provide exactly once 
semantics.

Printing Server Example

 Printing Server
 Remote operation prints some text at server 
 Server sends completion message after text is printed
 Client issues request and receives acknowledgement 

 Assumption
 Server crashes and subsequently recovers 
 Server announces to all clients that it just crashed but it is up 

and running again 
 Problem: Client doesn’t know whether printing was actually 

carried out

 Three events that can happen at the server
 Send the completion message (M), 
 Print the text (P), 
 Crash (C). 

Printing Server Example

 These events can occur in six different orderings:
1. MPC M →P →C: A crash occurs after sending the completion 

message and printing the text.
2. MC(P) M →C (→P): A crash happens after sending the 

completion message, but before the text could be printed.
3. PMC P →M →C: A crash occurs after sending the completion 

message and printing the text.
4. PC(M) P→C(→M): The text printed, after which a crash occurs 

before the completion message could be sent.
5. C(PM) C (→P →M): A crash happens before the server could 

do anything.
6. C(MP) C (→M →P): A crash happens before the server could 

do anything.



Printing Server Example

 Different combinations of client and server 

Server Response is Lost

 Lost replies 
 Detection is hard – only way is request timeout 
 It can also be that request is lost or the server had crashed.
 Don't know whether the server has carried out the operation 

 Examples: 
 File read(idempotent) vs. bank transfer(nonidempotent)

 Solutions
 Try to make your operations idempotent - repeatable 

without any harm done if it happened to be carried out 
before 

 Nonidempotent requests are a little harder to deal with.
 A common solution is to employ unique sequence numbers
 Another technique is the inclusion of additional bits in a 

retransmission to identify it as such to the server. 

Client Crashes

 Client crashes
 When a client crashes, and when an ‘old’ reply arrives, such a reply 

is known as an orphan. 

 Orphan solutions
 Extermination

 The client explicitly kills off the orphan if it is received

 Reincarnation
 When a client reboots, it broadcasts a new epoch number. When 

server receives the broadcast, it kills the computations that were 
running on behalf of the client

 Expiration
 Each RPC is associated with an expiration time T. 
 The call is aborted when the expiration time is reached
 If RPC cannot finish within T, the client must asks for another quantum
 If after a crash the client waits a time T before rebooting, all orphans 

are sure to be gone

Reliable Multicast

 Unicast vs. Multicast vs. Broadcast?
 Reliable unicast

 Transport layers (e.g., TCP) offer reliable point-to-point 
communication

 Reliable multicast
 Guarantee that all messages are delivered to all members 

in a process group
 Multiple reliable point-to-point communications

 Scalability?

 Basic reliable-multicasting



Basic Reliable-Multicasting Schemes

 A simple solution to reliable multicasting when all 
receivers are known and are assumed not to fail. 
a. Message transmission – note that the 3rd receiver is expecting 24
b. Reporting feedback – the 3rd receiver informs the sender

Reliable Multicasting Scalability

 Single sender, N receivers 
 Sender must accept at least N ACKs
 If N is large, sender may be swamped with feedback messages 

– feedback implosion

 Using only NACKs
 Receiver does not send ACK for message reception
 Receiver only sends NACK for missing message
 Better scalability (since ACKs are not sent)
 Problems?

 One step further: Scalable reliable multicasting

Nonhierarchical Feedback Control

 Several receivers have scheduled a request for 
retransmission, but the first retransmission request 
leads to the suppression of other feedbacks.

Hierarchical Feedback Control

 Hierarchical reliable multicasting
 The essence is that it supports the creation of very large groups
 Each local coordinator forwards the message to its children and 

later handles retransmission requests.
 A local coordinator handles retransmission requests locally, using 

any appropriate multicasting method for small groups.



Reliable Multicasting Scalability

 Simple reliability
 No messages lost

 In the presence of process failures
 What does reliable delivery mean in the presence of process 

failures?
 If a process fails it cannot receive the message

 Atomic Multicast
 Atomic multicasting ensures that non-faulty processes maintain a 

consistent view of the database, and forces reconciliation when a 
replica recovers and rejoins the group.

 Virtually synchronous
 Guarantee that message is delivered to either all non-faulty 

processes or none at all

 Message ordering
 All messages are delivered in the same order to all processes

Virtual Synchrony

 Model for group management and group 
communication
 A process can join or leave a group
 A process can send a message to a group

 Ordering requirements defined by programmer 

 Atomic multicast 
 “A message is either delivered to all processes in the group or 

to none” 

Virtual Synchrony System Model

 The logical organization of a distributed system to 
distinguish between message receipt and message 
delivery.

Virtual Synchrony

 The principle of virtual synchronous multicast



Implementing Virtual Synchrony

 Six different versions of virtually synchronous reliable 
multicasting.

Implementing Virtual Synchrony

a. P4 notices that P7 has crashed and sends a view change
b. P6 sends out all its unstable messages, followed by a 

flush message
c. P6 installs the new view when it has received a flush 

message from everyone else

Message Ordering
 Virtually synchronous behavior is independent from the 

ordering of message delivery.
 The only issue is that messages are delivered to an agreed upon 

group of receivers.
 Four different orderings

1. Unordered multicasts
 No guarantees are given concerning the order in which received 

messages are delivered by different processes

2. FIFO-ordered multicasts
 The communication layer is forced to deliver incoming messages 

from the same process in the same order as they have been sent

3. Causally-ordered multicasts
 Delivers messages so that potential causality between different 

messages is preserved

4. Totally-ordered multicasts
 It is required additionally that when messages are delivered, they 

are delivered in the same order to all group members.

Un-Ordered Multicast

 Three communicating processes in the same group.  
 The ordering of events per process is shown along the 

vertical axis.



FIFO-Ordered Multicast

 Four processes in the same group with two different 
senders, and a possible delivery order of messages 
under FIFO-ordered multicasting

Message Ordering

 Causally-ordered multicasts 
 If m1->m2 (causally related), then always deliver m2 after it 

has delivered m1
 Use logical clocks (vector clocks)

 Totally-ordered multicasts
 The message is delivered in the same order to all group 

members (regardless of the sending order) 
 Somewhat analogous to sequential consistency 

 Virtually synchronous reliable multicasting offering 
totally-ordered delivery is called atomic multicasting.

Distributed Commit

 A more general problem of atomic multicast
 Definition: 

 Having an operation performed by all group members or none 
at all

 In reliable multicast, operation is delivery of message

 There are three types of “commit protocol”
 Single-phase, Two-phase and Three-phase commit. 

One Phase Commit

 One phase commit protocol
 An elected co-ordinator tells all the other processes whether or 

not to locally perform the operation in question.
 But, what if a process cannot perform the operation?
 There’s no way to tell the coordinator! 
 The solutions: Two-Phase and Three-Phase Commit Protocols



Two Phase Commit

 Goal: 
 Reliably agree to commit or abort a collection of sub-

transactions 

 All processes in the transaction will agree to commit or 
abort 

 One transaction manager is elected as a coordinator –
the rest are participants 

 Assume 
 Write-ahead log in stable storage
 No system dies forever
 Systems can always communicate with each other 

Two Phase Commit

 Model: 
 The client who initiated the computation acts as coordinator; 

processes required to commit are the participants

 Phase 1: Voting Phase 
 Coordinator sends vote-request to participants (also called a 

pre-write) 
 When participant receives vote-request it returns either vote-

commit or vote-abort to coordinator. If it sends vote-abort, it 
aborts its local computation

 Phase 2: Commit Phase 
 Coordinator collects all votes; if all are vote-commit, it sends 

global-commit to all participants, otherwise it sends global-
abort

 Each participant waits for global-commit or global-abort and 
handles accordingly.

Two-Phase Commit

The finite state machine for 
the coordinator in 2PC

The finite state machine for 
a participant

Two-Phase Commit

 Actions taken by a participant P when residing in state 
READY and having contacted another participant Q.



Two-Phase Commit

 The steps taken by the coordinator in a two-phase 
commit protocol.

Two-Phase Commit

 The steps taken by the coordinator in a two-phase 
commit protocol.

Two-Phase Commit

 The steps taken 
by a participant
process in 2PC.

Two-Phase Commit

 The steps for handling incoming decision requests..



2PC Dealing with Failure

 2PC assumes a fail-recover model
 Any failed system will eventually recover 

 A recovered system cannot change its mind
 If a node agreed to commit and then crashed, it must be 

willing and able to commit upon recovery 

 Each system will use a write-ahead (transaction) log
 Keep track of where it is in the protocol (and what it agreed to)
 As well as values to enable commit or abort (rollback)
 This enables fail-recover

2PC Dealing with Failure

 Failure during Phase 1 (voting)
 Coordinator dies

 Some participants may have responded; others have no clue 
⇒ Coordinator restarts; checks log; sees that voting was in progress 
⇒ Coordinator restarts voting 

 Participant dies
 The participant may have died before or after sending its vote to 

the coordinator 
⇒ If the coordinator received the vote, wait for other votes and go 
to phase 2
⇒ Otherwise: wait for the participant to recover and respond (keep 
querying it) 

2PC Dealing with Failure

 Failure during Phase 2 (commit)
 Coordinator dies

 Some participants may have given commit/abort instructions
⇒ Coordinator restarts; checks log; informs all participants of 
chosen action 

 Participant dies
 The participant may have died before or after getting the 

commit/abort request 
⇒ Coordinator keeps trying to contact the participant with the 
request
⇒ Participant recovers; checks log; gets request from coordinator 

 If it committed/aborted, acknowledge the request
 Otherwise, process the commit/abort request and send back the 

acknowledgement 

Adding a Recovery Coordinator

 Another system can take over for the coordinator
 Could be a participant that detected a timeout to the 

coordinator 

 Recovery node needs to find the state of the protocol
 Contact ALL participants to see how they voted 
 If we get voting results from all participants

 We know that Phase 1 has completed
 If all participants voted to commit, send commit request
 Otherwise send abort request 

 If ANY participant states that it has not voted
 We know that Phase 1 has not completed, restart the protocol

 But … if a participant node also crashes, we’re stuck!
 Have to wait for recovery



Blocking Commit Protocol

 What’s wrong with the 2PC protocol? 
 Biggest problem: It’s a blocking protocol

 If the coordinator crashes, the group members may not be 
able to reach a final decision, and they may, therefore, block 
until the coordinator recovers
 A recovery coordinator helps in some cases

 A non-responding participant will also result in blocking 

 When a participant gets a commit/abort message, it 
does not know if every other participant was informed 
of the result.

 The solution: Three-Phase Commit Protocol

Three-Phase Commit

 Same setup as the two-phase commit protocol:
 Coordinator & Participants 

 Enable the use of a recovery coordinator
 Propagate the result of the commit/abort vote to each 

participant before telling them to act on it
 This will allow us to recover the state if any participant dies 

 Add timeouts to each phase that result in an abort 
 If the coordinator crashes – A recovery node can query 

the state from any available participant 

Three-Phase Commit

The finite state machine for 
the coordinator in 3PC

The finite state machine for 
a participant

Three Phase Commit

 Phase 1: Voting phase 
 Coordinator sends canCommit? queries to participants & gets 

responses
 Purpose: Find out if everyone agrees to commit
 If the coordinator gets a timeout from any participant, or any 

NO replies are received, send an abort to all participants 
 If a participant times out waiting for a request from the 

coordinator, it aborts itself (assume coordinator crashed) 
 Else continue to phase 2 



Three-Phase Commit

 Phase 2: ”Prepare to commit” phase
 Send Prepare message to all participants when it received a 

yes from all participants in phase 1
 Participants can prepare to commit but cannot do anything 

that cannot be undone
 Participants reply with an acknowledgement
 Purpose: Let every participant know the state of the result of 

the vote so that state can be recovered if anyone dies 
 If the coordinator gets a timeout (assume participant crashed), 

send an abort to all participants - The coordinator cannot 
count on every participant having received the Prepare 
message 

Three-Phase Commit

 Phase 3: “Commit” phase (same as in 2PC)
 If coordinator gets ACKs for all prepare messages, it will send a 

commit message to all participants
 Else it will abort – It will send an abort message to all 

participants 
 If participant times out, contact any other participant and move 

to that state (commit or abort)
 If coordinator times out, that’s ok 

3PC Recovery

 Possible states that the participant may report
 Already committed

 That means that every other participant has received a Prepare to 
Commit

 Some participants may have committed
 Send Commit message to all participants (just in case they didn’t get 

it) 

 Not committed but received a Prepare message
 That means that all participants agreed to commit; some may have 

committed
 Send Prepare to Commit message to all participants (just in case 

they didn’t get it)
 Wait for everyone to acknowledge; then commit 

 Not yet received a Prepare message
 This means no participant has committed; some may have agreed 
 Transaction can be aborted or the commit protocol can be restarted 

3PC Weaknesses

 Main weakness of 3PC
 May have problems when the network gets partitioned 
 Partition A: nodes that received Prepare message

 Recovery coordinator for A: allows commit

 Partition B: nodes that did not receive Prepare message
 Recovery coordinator for B: aborts

 Either of these actions are legitimate as a whole
 But when the network merges back, the system is inconsistent 

 Not good when a crashed coordinator recovers
 It needs to find out that someone took over and stay quiet
 Otherwise it will mess up the protocol, leading to an 

inconsistent state 



3PC Coordinator Recovery Problem

 Suppose
 A coordinator sent a Prepare message to all participants
 All participants acknowledged the message
 BUT the coordinator died before it got all acknowledgements 

 A recovery coordinator queries a participant 
 Continues with the commit: Sends Prepare, gets ACKs, sends 

Commit

 Around the same time…the original coordinator recovers
 Realizes it is still missing some replies from the Prepare
 Times out and decides to send an Abort to all participants

 Some processes may commit while others abort! 
 3PC works well when servers crash (fail-stop model)
 3PC is not resilient against fail-recover environments
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