The Computer
From Dix, Finlay, Abowd & Beale's *Human-Computer Interaction (Chapter 2)*

A computer system is made up of various elements
- **Input & Output**
 - Input devices – text entry and pointing
 - Output devices – screen (small & large), digital paper
 - Physical interaction – e.g. sound, haptics, physiological sensing
- **Memory**
 - RAM & Permanent media, capacity & access
- **Processing**
 - Speed of processing, networks

Interacting with Computers

to understand human–computer interaction
... need to understand computers!

- what goes in and out devices, paper, sensors, etc.
- what can it do? memory, processing, networks

A ‘Typical’ Computer System
- Screen, or monitor, on which there are windows
- Keyboard
- Mouse/trackpad
- Variations
 - desktop
 - laptop
 - PDA
- The devices dictate the styles of interaction that the system supports
- If we use different devices, then the interface will support a different style of interaction
How many computers do you have...

- in your house?
 - PC
 - TV, VCR, DVD, HiFi, cable/satellite TV
 - microwave, cooker, washing machine
 - central heating
 - security system
 - can you think of more?

- in your pockets?
 - PDA
 - phone, camera
 - smart card, card with magnetic strip?
 - electronic car key
 - USB memory
 - try your pockets and bags

Interactivity?

- No interactivity in the early age of computing
 - punched card stacks or large data files prepared
 - long wait …
 - line printer output … and if it is not right …

- Now most computing is interactive
 - rapid feedback
 - the user in control (most of the time)
 - doing rather than thinking …

- Is faster always better?
- Immature technologies can benefit from interactivity
 - vision, speech recognition, …
 - human speech recognition is not perfect, but is usable because...
 - human-human interaction is inherently interactive

Richer Interaction

Text Entry Devices

keyboards (QWERTY et al.)
- chord keyboards, phone pads
- handwriting, speech

Sensors and devices everywhere
Keyboards

- Most common text input device
- Allows rapid entry of text by experienced users
- Faster than writing, sometimes faster than speaking!
- Keypress closes connection, causing a character code to be sent
- Usually connected by cable, but can be wireless

QWERTY Keyboard

- Standardised layout
 - keys arranged in alphabetic order
 - not faster for trained typists
 - not faster for beginners either!
 - Often used in pocket electronic organizers

- Dvorak
 - common letters under dominant fingers
 - biased towards right hand
 - common combinations of letters alternate between hands
 - 10-15% improvement in speed and reduction in fatigue
 - But - large social base of QWERTY typists produce market pressures not to change

Alternative keyboard layouts
DVORAK Keyboard

Design objectives:
- The majority of keystrokes should alternate between hands.
- Place commonly used keys on the middle row.
- Minimize keystrokes made with stretching too far.
- Minimize keystrokes made with weak fingers.
- 56% of keystrokes are made with the right hand
 - Probably, not an objective but a side-effect.
 - Biased towards right-handed people

Experiments have shown a speed improvement of between 10 and 15%.

Special Keyboards

- **Designs to reduce fatigue for RSI (Repetitive Strain Injury)**
- For one handed use
 - e.g. the Maltron left-handed keyboard

Chord Keyboards

- Only a few keys - four or 5
- Letters typed as **combination of keypresses**
- Compact size
 - ideal for portable applications
- Short learning time
 - keypresses reflect letter shape
- Fast
 - once you have trained

- BUT – social resistance, plus fatigue after extended use
- NEW – niche market for some wearables
Phone pad and T9 entry

- Use numeric keys with multiple presses:
 2 - a b c 6 - m n o
 3 - d e f 7 - p q r s
 4 - g h i 8 - t u v
 5 - j k l 9 - w x y z
- hello = 4433555[pause]555666
- surprisingly fast!

- T9 predictive entry:
 - type as if single key for each letter
 - use dictionary to ‘guess’ the right word
 - hello = 43556 ...
 - but 26 -> menu ‘am’ or ‘an’

Handwriting Recognition

- Text can be input into the computer, using a pen and a digesting tablet:
 - natural interaction
- Technical problems:
 - capturing all useful information - stroke path, pressure, etc. in a natural manner
 - segmenting joined up writing into individual letters
 - interpreting individual letters
 - coping with different styles of handwriting
- Used in PDAs, and tablet computers ...
 ... leave the keyboard on the desk!

Speech Recognition

- Most successful when:
 - single user – initial training and learns peculiarities
 - limited vocabulary systems
- Problems with
 - external noise interfering
 - imprecision of pronunciation
 - large vocabularies
 - different speakers
- Recognition rate of 97% means...
 - A letter in error in every 30 letters.
 - A spelling mistake every six or so words.
- Imagine everybody in an office is talking
 - Noisy environment makes speech recognition even harder.
 - Unsuitable when privacy and confidentiality are important.

Numeric Keypads

- for entering numbers quickly:
 - calculator, PC keyboard
- for telephones
 - not the same!!
 - ATM like phone
Positioning, Pointing and Drawing

- mouse, touchpad
- trackballs, joysticks etc.
- touch screens, tablets
- eyegaze, cursors

Mouse

- First introduced by Douglas C. Engelbart in 1964
- Handheld pointing device
 - very common
 - easy to use
- Two characteristics
 - planar movement
 - buttons
 (usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing etc.)

Mouse

- Mouse located on desktop
 - requires physical space
 - no arm fatigue

- Relative movement only is detectable.
 - Movement of mouse (i.e., displacement, not an absolute position) moves screen cursor
 - Screen cursor oriented in (x, y) plane, mouse movement in (x, z) plane ... (A mental transformation is required)
- ... an indirect manipulation device.
 - device itself doesn't obscure screen, is accurate and fast.
 - hand-eye coordination problems for novice users

How does it work?

Two methods for detecting motion

- Mechanical
 - Ball on underside of mouse turns as mouse is moved
 - Rotates orthogonal potentiometers
 - Can be used on almost any flat surface

- Optical
 - light emitting diode on underside of mouse
 - may use special grid-like pad or just on desk
 - less susceptible to dust and dirt
 - detects fluctuating alterations in reflected light intensity to calculate relative motion in (x, z) plane
Even by Foot ...

- Some experiments with the *footmouse*
 - controlling mouse movement with feet ...
 - not very common
- But foot controls are common elsewhere:
 - car pedals
 - sewing machine speed control
 - organ and piano pedals

Touchpad

- small touch sensitive tablets
- 'stroke' to move mouse pointer
- used mainly in laptop computers
- good 'acceleration' settings important
 - fast stroke
 - lots of pixels per inch moved
 - initial movement to the target
 - slow stroke
 - less pixels per inch
 - for accurate positioning

Trackball and thumbwheels

- Trackball
 - ball is rotated inside static housing
 - like an upside down mouse!
 - relative motion moves cursor
 - indirect device, fairly accurate
 - separate buttons for picking
 - very fast for gaming
 - used in some portable and notebook computers
- Thumbwheels ...
 - for accurate CAD – two dials for X-Y cursor position
 - for fast scrolling – single dial on mouse

Joystick and Keyboard Nipple

- Joystick
 - indirect
 - pressure of stick = *velocity* of movement
 - buttons for selection
 - on top or on front like a trigger
 - often used for computer games
 - aircraft controls and 3D navigation
- Keyboard nipple
 - for laptop computers
 - miniature joystick in the middle of the keyboard
Touch-Sensitive Screen

- Detect the presence of finger or stylus on the screen.
 - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- Advantages:
 - fast, and requires no specialised pointer
 - good for menu selection
 - suitable for use in hostile environment: clean and safe from damage.
- Disadvantages:
 - finger can mark screen
 - imprecise (finger is a fairly blunt instrument!)
 - difficult to select small regions or perform accurate drawing
 - lifting arm can be tiring

Stylus and Light Pen

- Stylus
 - small pen-like pointer to draw directly on screen
 - may use touch sensitive surface or magnetic detection
 - used in PDA, tablets PCs and drawing tables
- Light Pen
 - now rarely used
 - uses light from screen to detect location
- BOTH ...
 - very direct and obvious to use
 - but can obscure screen

Digitizing tablet

- Mouse like-device with cross hairs
- used on special surface
 - rather like stylus
- very accurate
 - used for digitizing maps

Eyegaze

- Control interface by eye gaze direction
 - e.g. look at a menu item to select it
- Many different technologies
 - Uses laser beam reflected off retina .. A very low power laser
 - OEG
 - Machine vision
- Often used for evaluation
- Potential for hands-free control
 - When do you need hands-free control?
- High accuracy requires headset
- Cheaper and lower accuracy devices available
 - sit under the screen like a small webcam
Cursor Keys

- Four keys (up, down, left, right) on keyboard.
- Very, very cheap, but slow.
- Useful for not much more than basic motion for text-editing tasks.
- No standardised layout, but inverted “T”, most common

Discrete Positioning Controls

- In phones, TV controls etc.
 - cursor pads or mini-joysticks
 - discrete left-right, up-down
 - mainly for menu selection

- Many, many keys...
 - What are the advantages?
 - And disadvantages?

Displays

- bitmap screens (CRT & LCD)
- large & situated displays
- digital paper

Bitmap Displays

- Screen is vast number of coloured dots
Resolution and Color Depth

- Resolution ... used (inconsistently) for
 - number of pixels on screen (width x height)
 - e.g. SVGA 1024 x 768, PDA perhaps 240x400
 - density of pixels (in pixels or dots per inch - dpi)
 - typically between 72 and 96 dpi

- Aspect ratio
 - ration between width and height
 - 4:3 for most screens, 16:9 for wide-screen TV

- Colour depth:
 - how many different colours for each pixel?
 - black/white or greys only
 - 256 from a pallete
 - 8 bits each for red/green/blue = millions of colours

Anti-Aliasing

- Jaggies
 - diagonal lines that have discontinuities in due to horizontal raster scan process.

- Anti-aliasing
 - softens edges by using shades of line colour
 - also used for text

Cathode Ray Tube (CRT)

- Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows
- Used in TVs and computer monitors

Health Hazards of CRT!

- X-rays: largely absorbed by screen (but not at rear!)
- UV- and IR-radiation from phosphors: insignificant levels
- Radio frequency emissions, plus ultrasound (~16kHz)
- Electrostatic field leaks out through tube to user.
 - Intensity dependant on distance and humidity. Can cause rashes.
- Electromagnetic fields (50Hz-0.5MHz).
 - Create induction currents in conductive materials, including the human body. Two types of effects attributed to this: visual system - high incidence of cataracts in VDU operators, and concern over reproductive disorders (miscarriages and birth defects).
Health Hints ...

- Do not sit too close to the screen
- Do not use very small fonts
- Do not look at the screen for long periods without a break
- Do not place the screen directly in front of a bright window
- Work in well-lit surroundings

* Take extra care if pregnant, but also posture, ergonomics, stress

Liquid Crystal Displays (LCD)

- Smaller, lighter, and ... no radiation problems.
- Found on PDAs, portables and notebooks, ... and increasingly on desktop and even for home TV
- Also used in dedicated displays: digital watches, mobile phones, HiFi controls
- How it works ...
 - Top plate transparent and polarised, bottom plate reflecting.
 - Light passes through top plate and crystal, and reflects back to eye.
 - Voltage applied to crystal changes polarisation and hence colour.
 - N.B. light reflected not emitted => less eye strain

Liquid Crystal Display

- Liquid crystal
 - Long polymer molecules in an orderly arrangement, but not as orderly as a crystal
 - A molecule has a polarity so that it can align to an electric field.

Special Displays

- Random Scan (Directed-beam refresh, vector display)
 - Draw the lines to be displayed directly
 - No jaggies
 - Lines need to be constantly redrawn
 - Rarely used except in special instruments

- Direct view storage tube (DVST)
 - Similar to random scan but persistent => no flicker
 - Can be incrementally updated but not selectively erased
 - Used in analogue storage oscilloscopes
Large Displays
- Used for meetings, lectures, etc.
- Technology
 - Plasma – usually wide screen
 - Video walls – lots of small screens together
 - Projected – RGB lights or LCD projector
 - hand/body obscures screen
 - may be solved by 2 projectors + clever software
 - Back-projected projector
 - frosted glass + projector behind

Situated Displays
- Displays in ‘public’ places
 - large or small
 - very public or for small group
- Display only for information relevant to location
- or interactive
 - use stylus, touch sensitive screen
- in all cases ... *the location matters*
 - meaning of information or interaction is related to the location
 - Display on my office door
 - If it say “available”, what does this mean?
 - If it has a space for writing, what is it for?

Hermes a Situated Display
- Small displays beside office doors
 - handwritten notes left using stylus
 - office owner reads notes using web interface

Digital Paper
- What?
 - thin flexible sheets
 - updated electronically
 - but retain display
- How?
 - small spheres turned
 - or channels with coloured liquid and contrasting spheres
 - rapidly developing area
Virtual Reality and 3D Interaction
positioning in 3D space
moving and grasping
seeing 3D (helmets and caves)

Positioning in 3D space

- Cockpit and virtual controls
 - steering wheels, knobs and dials ... just like real!
- 3D mouse
 - six-degrees of movement: x, y, z + roll, pitch, yaw
- Data glove
 - fibre optics used to detect finger position
- VR helmets
 - detect head motion and possibly eye gaze
- Whole body tracking
 - accelerometers strapped to limbs or reflective dots and video processing

Yaw, Pitch and Roll

yaw
pitch
roll
3D Displays

- Desktop VR
 - ordinary screen, mouse or keyboard control
 - perspective and motion give 3D effect
- Seeing in 3D
 - use stereoscopic vision
 - VR helmets
 - screen plus shuttered specs, etc.

VR headsets

- Small TV screen for each eye
- Slightly different angles
- 3D effect

Simulators and VR Caves

- scenes projected on walls
- realistic environment
- hydraulic rams!
- real controls
- other people

VR Motion Sickness

- Time delay
 - move head ... lag ... display moves
 - conflict: head movement vs. eyes
- Depth perception
 - headset gives different stereo distance
 - but all focused in same plane
 - conflict: eye angle vs. focus
- Conflicting cues => sickness
 - helps motivate improvements in technology
Physical Controls, Sensors etc.
special displays and gauges
sound, touch, feel, smell
physical controls
environmental and bio-sensing

Dedicated Displays
- Analogue representations:
 - dials, gauges, lights, etc.
- Digital displays:
 - small LCD screens, LED lights, etc.
- Head-up displays
 - found in aircraft cockpits
 - show most important controls
 ... depending on context

Sounds
- beeps, bongs, clonks, whistles and whirrs
- used for error indications
- confirmation of actions e.g. keyclick

Touch, feel, smell
- Touch and feeling important
 - in games ... vibration, force feedback
 - in simulation ... feel of surgical instruments
 - called haptic devices
- Texture, smell, taste
 - current technology very limited
BMW iDrive
- For controlling menus
- Feel small ‘bumps’ for each item
- Makes it easier to select options by feel
- Uses haptic technology from Immersion Corp.

Physical Controls
- Specialist controls needed ...
 - industrial controls, consumer products, etc.

Environment and Physiological Sensing
- Sensors all around us
 - car courtesy light – small switch on door
 - ultrasound detectors – security, washbasins
 - RFID security tags in shops
 - temperature, weight, location
- ... and even our own bodies ...
 - iris scanners, body temperature, heart rate, galvanic skin response, blink rate

Paper: Printing and Scanning
print technology
- fonts, page description, WYSIWYG
- scanning, OCR
Printing

- Image made from small dots
 - allows any character set or graphic to be printed,
- Critical features:
 - resolution
 - size and spacing of the dots
 - measured in dots per inch (dpi)
 - speed
 - usually measured in pages per minute
 - cost!!

Types of Dot-based Printers

- Dot-matrix printers
 - use inked ribbon (like a typewriter)
 - line of pins that can strike the ribbon, dotting the paper.
 - typical resolution 80-120 dpi
- Ink-jet and Bubble-jet printers
 - tiny blobs of ink sent from print head to paper
 - typically 300 dpi or better.
- Laser printer
 - like photocopier: dots of electrostatic charge deposited on drum, which picks up toner (black powder form of ink) rolled onto paper which is then fixed with heat
 - typically 600 dpi or better.

Printing in the workplace

- Shop tills
 - dot matrix
 - same print head used for several paper rolls
 - may also print cheques
- Thermal printers
 - special heat-sensitive paper
 - paper heated by pins makes a dot
 - poor quality, but simple & low maintenance
 - used in some fax machines

Fonts

- Font – the particular style of text
 - Courier font
 - Helvetica font
 - Palatino font
 - Times Roman font
 - §£≈ŒŒ·~ (special symbol)
- Size of a font measured in points (1 pt about 1/72") (vaguely) related to its height
 - This is ten point Helvetica
 - This is twelve point
 - This is fourteen point
 - and this is twenty-four point
Fonts

- **Pitch**
 - fixed-pitch – every character has the same width
 - e.g. Courier
 - variable-pitched – some characters wider
 - e.g. Times Roman – compare the ‘i’ and the “m”

- **Serif or Sans-serif**
 - sans-serif – square-ended strokes
 - e.g. Helvetica
 - serif – with splayed ends (such as)
 - e.g. Times Roman or Palatino

Readability of Text

- **lowercase**
 - easy to read shape of words

- **UPPERCASE**
 - better for individual letters and non-words
 - e.g. flight numbers: BA793 vs. ba793

- **Serif fonts**
 - helps your eye on long lines of printed text
 - but sans serif often better on screen

Page Description Languages

- Pages very complex
 - different fonts, bitmaps, lines, digitised photos, etc.
- Can convert it all into a bitmap and send to the printer
 - ... but often huge!
- Alternatively Use a page description language
 - sends a *description* of the page can be sent,
 - instructions for curves, lines, text in different styles, etc.
 - like a programming language for printing!
- PostScript is the most common

PostScript Example

- %!
- %% Draws a one square inch box and inch in from the bottom left
- /inch {72 mul} def % Convert inches->points (1/72 inch)
- newpath % Start a new path
- 1 inch 1 inch moveto % an inch in from the lower left
- 2 inch 1 inch lineto % bottom side
- 2 inch 2 inch lineto % right side
- 1 inch 2 inch lineto % top side
- closepath % Automatically add left side to close path
- stroke % Draw the box on the paper
- showpage % We’re done... eject the page
Screen and Page

- WYSIWYG
 - What You See Is What You Get
 - aim of word processing, etc.

- but ...
 - screen: 72 dpi, landscape image
 - print: 600+ dpi, portrait

- Can try to make them similar
 - but never quite the same

- So ... need different designs, graphics etc, for screen and print

Scanners

- Take paper and convert it into a bitmap

- Two sorts of scanner
 - flat-bed: paper placed on a glass plate, whole page converted into bitmap
 - hand-held: scanner passed over paper, digitising strip typically 3-4" wide

- Shines light at paper and note intensity of reflection
 - colour or greyscale

- Typical resolutions from 600–2400 dpi

Scanners

- Used in
 - desktop publishing for incorporating photographs and other images
 - document storage and retrieval systems, doing away with paper storage
 - special scanners for slides and photographic negatives

Optical Character Recognition (OCR)

- OCR converts bitmap back into text

- Different fonts
 - create problems for simple “template matching” algorithms
 - more complex systems segment text, decompose it into lines and arcs, and decipher characters that way

- Page format
 - columns, pictures, headers and footers
Paper-based interaction

- Paper usually regarded as output only
- Can be input too – OCR, scanning, etc.
- Xerox PaperWorks
 - Glyphs – small patterns of /\//\//
 - Used to identify forms etc.
 - Used with scanner and fax to control applications
- More recently
 - Papers micro printed - like watermarks
 - Identify which sheet and where you are
 - Special ‘pen’ can read locations
 - Know where they are writing

Memory
short term and long term
speed, capacity, compression
formats, access

Short-Term Memory - RAM

- Random access memory (RAM)
 - On silicon chips
 - 100 nano-second access time
 - Usually volatile (lose information if power turned off)
 - Data transferred at around 100 Mbytes/sec
- Some non-volatile RAM used to store basic set-up information
- Typical desktop computers (in 2018):
 - 4 GB RAM on most not-too-old desktops
 - 8~16 GB RAM for gaming computers

Long-Term Memory - Disks

- Magnetic disks
 - Floppy disks store around 1.4 Mbytes
 - Hard disk drive (in 2018) typically 2 TB on most not-too-old desktops
 - Typically it spins at 5,400 to 15,000 RPM
 - Most hard drives operate on high speed interfaces using serial ATA (SATA) or serial attached technology
 - With the advent of solid-state drives (SSDs) (transfer rate is 5~10 times faster than HDD), magnetic disks are no longer considered the only option, but are still commonly used.
- Optical disks
 - Use lasers to read and sometimes write
 - More robust than magnetic media
 - CD-ROM
 - Same technology as home audio, ~ 600 Gbytes
 - DVD - for AV applications, or very large files
 - Blu-Ray
Blurring Boundaries

- PDAs
 - often use RAM for their main memory
- Flash-Memory
 - used in PDAs, cameras etc.
 - silicon based but persistent
 - plug-in USB devices for data transfer

Speed and Capacity

- What do the numbers mean?
- Some sizes (all uncompressed) ...
 - this book, text only ~ 320,000 words, 2Mb
 - the Bible ~ 4.5 Mbytes
 - scanned page ~ 128 Mbytes
 - (11x8 inches, 1200 dpi, 8bit greyscale)
 - digital photo ~ 10 Mbytes
 - (2–4 mega pixels, 24 bit colour)
 - video ~ 10 Mbytes per second
 - (512x512, 12 bit colour, 25 frames per sec)

Virtual Memory

- Problem:
 - running lots of programs + each program large
 - not enough RAM
- Solution - Virtual memory :
 - store some programs temporarily on disk
 - makes RAM appear bigger
- But ... swapping
 - program on disk needs to run again
 - copied from disk to RAM
 - slows things down

Compression

- Reduce amount of storage required
- Techniques
 - Run-length encoding
 - Huffman encoding
 - Predictive encoding
 - Perceptual encoding, ...
- Data is not always serial!
 - 1-D: Text, audio, ...
 - 2-D: Still image
 - 3-D: Motion picture
 - Difference methods for different dimensional data
Compression

- **Lossless**
 - recover exact text or image – e.g. GIF, ZIP
 - look for commonalities:
 - text: AAAAAAAAAABBBBBCCCCCCCC → 10A5B8C
 - video: compare successive frames and store change

- **Lossy**
 - recover something like original – e.g. JPEG, MP3
 - exploit perception
 - JPEG: lose rapid changes and some colour
 - MP3: reduce accuracy of drowned out notes

Storage Formats - Text

- **Character formats**
 - ASCII - 7-bit binary code for each letter and character
 - Unicode - 8-bit encoding of 16 bit character set

- **Document formats**
 - Rich Text Format (RTF) text plus formatting and layout information
 - Standard Generalized Markup Language (SGML) documents regarded as structured objects
 - Extended Markup Language (XML) simpler version of SGML for web applications

Storage Formats - Media

- **Images**
 - many storage formats:
 - (PostScript, GIF, JPEG, TIFF, PICT, BMP, RGB, etc.)
 - plus different compression techniques
 - to reduce their storage requirements

- **Audio/Video**
 - again lots of formats:
 - (QuickTime, MPEG, WAV, etc.)
 - compression even more important
 - also ‘streaming’ formats for network delivery

Methods of Access

- **Large information store**
 - long time to search => use index
 - what you index => what you can access

- **Simple index needs exact match**

- **Forgiving systems:**
 - Xerox "do what I mean" (DWIM)
 - SOUNDEX – McCloud ~ MacLeod

- **Access without structure ...**
 - free text indexing (all the words in a document)
 - needs lots of space!!
Processing and Networks
finite speed (but also Moore’s law)
limits of interaction
networked computing

Finite Processing Speed
- Designers tend to assume fast processors, and make interfaces more and more complicated
- But problems occur, because processing cannot keep up with all the tasks it needs to do
 - cursor overshooting because system has buffered keypresses
 - icon wars - user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere
- Also problems if system is too fast - e.g. help screens may scroll through text much too rapidly to be read

Moore’s law
- Computers get faster and faster!
- 1965 ...
 - Gordon Moore, co-founder of Intel, noticed a pattern
 - processor speed doubles every 18 months
 - PC ... 1987: 1.5 Mhz, 2002: 1.5 GHz
- Similar pattern for memory
 - but doubles every 12 months!!
 - hard disk ... 1991: 20Mbyte : 2002: 30 Gbyte
- Baby born today
 - record all sound and vision
 - by 70 all life's memories stored in a grain of dust!

The Myth of the Infinitely Fast Machine
- Implicit assumption ... no delays an infinitely fast machine
- What is good design for real machines?
- Good example ... the telephone :
 - type keys too fast
 - hear tones as numbers sent down the line
 - actually an accident of implementation
 - emulate in design

/e3/online/moores-law/
If processor is slower than is expected...

- Functional faults - Ex: Drawing a line with a mouse
 - Program detects depressing of a button, and then reads the current cursor position
 - If there is a time delay between the detection of button depression and reading of cursor position, a line will not begin at the point of button click.
 - The result does not conform to the user intention → functional faults

- Delayed feedback - Ex: Cursor tracking, icon wars, ..
 - Sometimes, a program is too busy to respond to inputs.
 - Nevertheless, the input module can receive input messages and stores them in a queue.
 - A program, now free from a busy task, starts to handle the input messages.
 - A user, without a prompt feedback, can issue the same command repeatedly, will receive an unexpected burst of delayed responses.

If processor is faster than is expected...

- Flashing feedback
 - A user need time to perceive appearing, moving, and disappearing of GUI objects
 - Ex: Game programs relying on a delay loop for timing
 - Run an old Tetris program on your PC. A shower of blocks even in level 0.
 - Ex: A new browser window of the same size and position as an existing browser window
 - It is hard to tell if the current window is showing a new page or a new browser window was created for the new page.

- One should not assume about the speed of a processor.
 - Sometimes, an intentional delay is useful in order to allow a user to be prepared and have time to perceive changes.
 - Animation is one of the most common and effective ways to provide a proper feedback to a user.

Limitations on Interactive Performance

- Computation bound
 - Computation takes ages, causing frustration for the user

- Storage channel bound
 - Bottleneck in transference of data from disk to memory

- Graphics bound
 - Common bottleneck: updating displays requires a lot of effort - sometimes helped by adding a graphics co-processor optimised to take on the burden

- Network capacity
 - Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed

- All these bounds are not a serious problem for a modern PC. However, remember there are other kinds of computers, e.g., PDAs and phones.

Networked Computing

- Networks allow access to ...
 - large memory and processing
 - other people (groupware, email)
 - shared resources – esp. the web

- Networked computing means...
 - Computing resources are distributed.
 - Many users can access the same resource at the same time.
 - Channels between computing resources are not homogeneous and reliable.
 - Ideals of consistency, informative feedback and predictable response are violated.

- Issues
 - network delays – slow feedback
 - conflicts - many people update data
 - unpredictability
Internet

- History ...
 - 1969: DARPANET US DoD, 4 sites

- Common language (protocols):
 - TCP – Transmission Control Protocol
 - lower level, packets (like letters) between machines
 - IP – Internet Protocol
 - reliable channel (like phone call) between programs on machines
 - email, HTTP, all build on top of these

Reference

- Dix, Finlay, Abowd & Beale, Human-Computer Interaction (Ch2)
- http://www.hcibook.com/e3-docs/slides/ppt/e3-chap-02.ppt