
The Origin of
Networked Virtual Environments

448430
Spring 2009
3/16/2009

Kyoung Shin Park
Multimedia Engineering

Dankook University

Networked Virtual Environments
Text-based Online Community

MUDs & MOOs
Networked Games

SGI Flight & Dogfight
DOOM
MMORPG

Online Community
Active World, Blaxxun, Community Place, Open Community
Second Life

Networked Virtual Environments
SIMNET/Distributed Interactive Simulation (DIS)/NPSNET
PARADISE
DIVE
BrickNet
MR Toolkit
Diamond Park
CAVERNsoft

Games & Communities

MUDs & MOOs

MUD (Multi-User Domain) by Richard Bartle and Roy
Trubshaw in 1978
MOO (MUD, Object-Oriented)
Text-based VR environment
Originally designed as a form of
the Dungeons and Dragons game
Developed for multi-users
Allows users to interact both with
their environment and with other users
Descriptions of real and imagined areas such as forests,
dungeons, offices, universities, cities, rooms, or any other
spatially oriented environment
Communication commands are modeled on real life,
with “say”, “tell”, “whisper” and “shout”

SGI Flight & Dogfight

SGI Flight
3D aero plane simulator demo for Silicon Graphics workstation in
1983-1984.
Gary Tarolli of Silicon Graphics, Inc. is probably the person that
most in the networked virtual environment community would
credit as the originator of their thoughts on NVEs.
Users could see each other’s plane but no interaction.
Networking was added into Flight in stages, beginning in 1984.
The initial networked version of Flight actually used a serial cable
between two SGI workstations and ran at something like 7 frames
per second on a Motorola 68000 based workstation (about 1 MIPS
with maybe 500 polygons per second graphics capability).
Flight was distributed in networked form on all SGI workstations
sometime after SIGGRAPH 1984 and could be seen in practically
every SGI-outfitted lab at that time, either during the day on breaks
or after hours.

SGI Flight & Dogfight

SGI Dogfight
Sometime after the release of the networked version of Flight, in
early 1985 it is believed, SGI engineers modified the code of
Flight to produce the demonstration program Dogfight.
This modification dramatically upgraded the visibility of NVEs
as players could now interact by shooting at each other.
It did not help that Dogfight packets were transmitted at frame
rate and were clogging the network.
Flight/Dogfight inspired many to develop their own NVE.
We believe that networked Flight/Dogfight inspired the
development of more networked VEs and games than SIMNET
and DIS combined.
SGI made the source code to Flight and Dogfight freely available
and many people asked for the code just so they could learn how
to read and write UDP packets.

Doom

On Dec 1993, id Software released
its shareware game, Doom.
First-person shooter (FPS) for PCs
The shareware giveaway of the
first level of Doom is probably
singularly responsible for the rush
of startups into the business of
providing online gaming
networks.
This networked ability to blast
people in a believable 3D
environment created enormous
demand for further 3D networked
games.

Doom

The posting of Doom caught most network
administrators’ eyes when their LANs started bogging
down. Doom did no dead reckoning and flooded LANs
with packets at frame rate.
This networked ability to blast people in a believable 3D
environment created enormous demand for further 3D
networked games.
An estimated 15 million shareware copies of Doom have
been downloaded around the world, passed from player
to player by floppy disk or online networks.

Online Community
Internet-based networked
virtual environments will
impact the greatest number
of people.
Examples are Active World,
Blaxxun, Sony’s Community
Place, Open Community,
Vnet.
Problems of latency,
rendering, inconsistency,
lack of interaction

Online Community
Second Life is an online 3D
virtual world community,
developed by Linden Lab
and modelled after the
Metaverse of Snow Crash.

‘Dokdo is Korea Territory!’ in Second Life
www.serakorea.com

Online Game
Massively multiplayer online
role-playing game
(MMORPG) is a genre of
computer role-playing
games, in which a large
number of players interact
with one another in a virtual
world.
Richard Garriott, the creator
of Ultima Online, coined the
term MMORPG.
Popular examples are
Neverwinter Nights, Ultima
Online, EverQuest, Blizzard’s
World of Warcraft.

Ultima Online

Online Game

(1997 - 2005)
From, Shawn Rider “MMORPGs: MUD to Wow” (2006/3/7)

Department of Defense
Networked Virtual Environments

SIMNET (Simulator Networking)

SIMNET (simulator
networking) is a distributed
military virtual environment
for DARPA, begun in 1983,
delivered to the U.S. Army at
the end of March 1990.
The goal was to develop a
“low-cost” networked virtual
environment for training
small units to fight as a team.
SIMNET project created an
11-site testbed with from 50
to 100 simulators at each site.

SIMNET

The key technical challenges for SIMNET were
How to fabricate high quality, low-cost simulators and
How to network them together to create a consistent, virtual
battlefield.

Testbed
To carry out the study of these technical challenges, the SIMNET
project created an 11 site testbed with from 50 to 100 simulators
at each site.
SIMNET could be entered from anywhere on the network using
a simulator as the portal into the synthetic environment. Once
that synthetic environment was entered, the “player” could
interact with others who were also online in the synthetic
battlefield.
Play in that synthetic environment was unscripted, basically
free-play, done within the confines of whatever chain of
command was imposed on the simulation participants.

SIMNET Architecture

Computer
Image

Generation
Software

Other-Vehicle
State Table

Network
Interface
Software

Sound
Generation
Software

Own-Vehicle
Dynamics

Control and
Interface
Software

Local area network

SIMNET Network Software Architecture

The SIMNET network software architecture has three
basic components:

An object-event architecture,
A notion of autonomous simulation nodes, and
An embedded set of predictive modeling algorithms called
“dead reckoning”

SIMNET Network Software Architecture

The SIMNET object-event architecture modeled the
world as a collection of objects whose interactions with
each other are just a collection of events.

Objects are the vehicles and weapons systems that can interact
across the network.
Events in SIMNET are messages to the network indicating a
change in world or object state.
In SIMNET, the notion of autonomous simulation nodes means
that individual players (vehicles and weapons systems) on the
network are responsible for placing messages, or packets, onto
the network to accurately represent their current state.
Packet recipients are responsible for receiving such state change
information and making the appropriate changes to their local
model of the world.

SIMNET
Autonomous Simulator Nodes

In SIMNET, the notion of autonomous simulation nodes means
that individual players (vehicles and weapons systems) on the
network are responsible for placing messages, or packets, onto
the network to accurately represent their current state.
Packet recipients are responsible for receiving such state change
information and making the appropriate changes to their local
model of the world.
This lack of a central server means that single point failures in
the system do not take the entire simulation down. Additionally,
it allows players to join and leave the simulation at any time.
Placing changes in state on the network means that a node must
place packets onto the network whenever its objects have
changed enough so that the other players should be made
cognizant of the changes.
Placing current state onto the network also means that a node
must provide a regular “heartbeat” message, usually every 5
seconds, to keep other players informed that a particular object
is alive and still in the system (and hence should be displayed).

SIMNET

Dead-Reckoning
To reduce packet traffic in SIMNET, the objects and ghosts
paradigm was created. The idea behind this paradigm is that
objects only place packets onto the network when their home
node determines that the other nodes on the network are no
longer able to predict their state within a certain threshold
amount.
This paradigm assumes that the other nodes in the system are
maintaining “ghost” copies of the object in their memories and
that the last reported direction, velocity, and position are
sufficient to predict, within the threshold amount, where that
entity is now.

SIMNET Scalability

SIMNET Scalability
The SIMNET network software architecture proved scalable
with an exercise in March of 1990 having some 850 objects at five
sites, with most of those objects being semi-automated forces.
Objects in that test averaged one packet per second, with each
packet being some 156 bytes in size for a peak requirement of
1.06 Mbits/second, just under the T-1 speed of the connecting
links.

Distributed Interactive Simulation (DIS)

The DIS network software architecture is a direct
descendent from SIMNET but has packets that are more
general than SIMNET’s.
DIS was an attempt to formally generalize and extend
the SIMNET protocol.
First version of the IEEE standard for DIS was appeared
in 1993.
Goals was to allow any type of player, on any type of
machine, and to achieve large simulations.

Distributed Interactive Simulation (DIS)

DIS has the same three basic components
an object-event architecture
notion of fully distributed simulation nodes
embedded set of predictive modeling algorithms for “dead
reckoning”

Distributed Interactive Simulation (DIS)
Protocol Data Unit (PDU)

The core of the DIS network software architecture is the protocol
data unit (PDU).
Determining when each vehicle (node) of the simulation should
issue a PDU is the key to this architecture.
The DIS (IEEE 1278) standard defines 27 different PDUs, only
four of which (Entity State, Fire, Detonation, and Collision) are
used by nodes to interact with the virtual environment.
In fact, most DIS-compliant simulations only implement those
four PDUs, either throwing away the other 23 PDUs without
comment or issuing a brief error message indicating a non-
supported PDU was received.
A demonstration at the 1993 Interservice/Industry Training and
Education Conference (I/ITSEC) showed that Entity State PDUs
comprised 96% of the total DIS traffic.
Remaining 4% distributed mainly amongst Transmitter (50%),
Emission (39%), Fire (4%), and Detonation (4%).

Distributed Interactive Simulation (DIS)
Protocol Data Unit (PDU)

The simulation contained 79 players sending PDUs, though the
actual mix of vehicles involved in this exercise is not available.
Air vehicles issued one ESPDU/second average in that
demonstration, with land vehicles averaging 0.17
ESPDUs/second. Some participants in that demonstration
issued packets at frame rate, and some produced 20
ESPDUs/second
In DIS, we get more of a notion that any type of computer
plugged into the network that reads/writes DIS PDUs and
manages the state of those PDUs properly can fully participate
in a DIS environment.
This fully distributed, heterogeneous network software
architecture means that workstation class machines can play
against PC class machines.
Additionally, it means that the environment can include virtual
players (driven by a live human at a computer console of some
sort), constructive players (computer-driven players), and live
players (actual weapons systems plugged into the DIS network).

DIS Scalability

DIS Scalability
There are several instances of fairly large DIS engagements,
much larger than the 300 to 500 players for which DIS is
designed.
However, these “DIS” engagements actually modify the DIS
network software architecture for their particular circumstances
to achieve useful demonstrations.

A DIS Networked VE - CCTT

The US Army's
Close Combat
Tactical Trainer
(CCTT) is one of
the larger scale
networked
virtual
environments.

High-Level Architecture (HLA)

Aims at providing a general architecture and services for
distributed data exchange.
While the DIS protocol is closely linked with the
properties military units and vehicles, HLA does not
prescribe any specific implementation or technology.

Could be used also with non-military applications (e.g.
computer games).
Targeted towards new simulation developments

HLA was issued as IEEE Standard 1516 in 2000.

Academic
Networked Virtual Environments

NPSNET

The NPSNET Research Group is the longest continuing
academic research effort in networked virtual
environments. The focus of the group is on the complete
breadth of human-computer interaction and software
technology for implementing large-scale virtual
environments (LSVEs).
There have been several generations of software
formally named NPSNET and several precursor systems.

Early NPS Networked VEs

The origins of the NPSNET virtual environment are an
introductory computer graphics class project, fall quarter
1986. In that class, two students, Doug Smith and Dale
Streyle, developed a visual simulator for the fiber-
optically guided missile (FOG-M) system [Smith/Streyle
87 and Zyda 88].

The implementation of FOG-M came at the same time that Mike
Zyda went to Japan for an extended three week consulting visit.

Early NPS Networked VEs

VEH was the vehicle simulator. VEH and FOG-M
connected via a simple open socket that allowed VEH
and FOG-M to do basic Unix read()/write() functions for
exchange of state information. By July of 1987, the
NPSNET group had networked FOG-M and VEH.

Early NPS Networked VEs

The Moving Platform Simulator (MPS) was the NPSNET
group’s testbed for looking at how to achieve more
players in the networked virtual environment. MPS-1,
MPS-2 and MPS-3 utilized an ASCII, NPS-invented
protocol and broadcasting to exchange state information
(1988-1990)

NPSNET-1, 2 & 3

NPSNET-1 was demonstrated live at the SIGGRAPH 91
conference as part of the Tomorrows Realities Gallery.
NPSNET-1 did not use dead-reckoning. NPSNET-1
flooded the network with packets at frame rate.
NPSNET-2 and 3 were utilized to explore better, faster
ways to do graphics, and to extend the size of the terrain
databases possible.
NPS-Stealth was spawned off from NPSNET-1, with the
goal of developing a system capable of reading SIMNET
terrain databases and SIMNET networking protocols.
NPS-Stealth was operational in March of 1993. It was the
only workstation-based virtual environment capable of
interoperating with the $350,000 per copy SIMNET
system.

NPSNET-IV

In March of 1993, Silicon Graphics came out with their
Performer API for developing virtual environments and
visual simulation systems. The NPSNET group looked at
the SGI Performer demos and decided to build NPSNET-
IV. NPSNET-IV was DIS-compliant, dead-reckoned and
had spatial sound.
NPSNET-IV has many capabilities that in some ways,
make it one of the most ambitious virtual environments
of its day. In Swiss-Army-knife-fashion, a player using
NPSNET-IV can be a fully-articulated human, a ground
vehicle of almost any type, an air vehicle of any type,
and any type of surface and subsurface vessel.
NPSNET-IV has interoperated with almost every DIS-
compliant virtual environment ever constructed.

NPSNET

NPSNET has gone
through a number of
versions ...

NPSNET-IV

NPSNET-IV Capabilities
Building walkthroughs.
Articulated humans - mounting/dismounting capability.
Networking - play across the multicast backbone of Internet.
Terrain database integration, terrain paging (70km x 70km).
Any vehicle capability - air, ground, articulated human.
Testbed for VE NSA issues.
Interoperability - SIMNET/DIS

Constructive model integration - Janus World Modeler
ModSAF

NPSNET-IV

NPSNET-IV NPSNET-IV

Paradise

The PARADISE (Performance Architecture for
Advanced Distributed Interactive Simulation
Environments) project was initiated in 1993 by David
Cheriton, Sandeep Singhal, and Hugh Holbrook of the
Distributed Systems Group at Stanford University.
PARADISE’s designers focused on bandwidth reduction.
The PARADISE system used IP multicast, assigning a
different multicast address to each active object.

They did this by creating a mini-MBone among the non-
multicast-capable hosts on an otherwise multicast-aware
network.

Paradise
Hosts transmit updates for local objects in much the
same way as SIMNET and DIS.

However, to further reduce bandwidth, a hierarchy of Area of
Interest (AOI) servers collect information subscriptions from
each host.
The servers monitor the positions of objects and notify hosts
about which objects' multicast groups they should subscribe to.

Unlike SIMNET, PARADISE treats all objects, including
terrain, uniformly as first-class entities.

Each is capable of transmitting state updates.
At the same time, PARADISE’s designers tried to correct several
of the mistakes made by DIS. For example, PARADISE
recognizes that entities represented a spectrum ranging from
rapidly-changing objects that needed to generate frequent
updates to slowly-changing objects that rarely needed to send
updates.

Paradise

PARADISE supports multiple independent
communication flows per object, with each flow
enabling remote dead reckoning at a different level of
accuracy.
PARADISE also provides techniques for combining
information about groups of objects, based both on their
virtual world location and based on their type.

Paradise Scalability

The system's flying
helicopter
demonstration could
support 50-70
simultaneous entities,
being bound by
performance of the
graphics hardware.

DIVE

The Swedish Institute of Computer Science’s Distributed
Interactive Virtual Environment (DIVE) is another early
academic virtual environment.
DIVE has a homogeneous distributed database like
SIMNET and DIS-compliant systems.
DIVE uses the ISIS toolkit to implement the concept of
process groups.
However, unlike SIMNET the entire database is dynamic
and uses reliable multicast protocols to actively replicate
new objects.

DIVE

DIVE

A disadvantage with this
approach is that it is difficult to
scale-up because of the
communications costs associated
with maintaining reliability and
consistent data.
For example, modeling terrain
interactions, such as building a
berm, still would be very
expensive (though highly
desirable) in terms of the number
of polygons that would need to
be created, changed, and
communicated in DIVE.

BrickNet

BrickNet is the work of Gurminder Singh at the Institute
of Systems Science at the National University of
Singapore.
A client-server model in which the database is
partitioned among clients.
Communication is mediated by central servers.

For example, as an entity moves through the VE, its database is
updated by an object-request broker on a server that has
knowledge of which client maintains that part of the world.
BrickNet shows us the limitations/possibilities of client-server
architectures for Net-VEs.

BrickNet

S1

S2 S3

Clients of S1

Clients of S3Clients of S2

Server
Communication

BrickNet

CyberBug Demo

RING: A Client-Server System for Multi-
User VEs

A client-server system similar to BrickNet that supports
real-time visual interaction between a large number of
users in a shared 3D VE.
The key feature of the system is that server-based
visibility algorithms compute potential visual
interactions between entities representing users in order
to reduce the number of messages required to maintain
consistent state among many workstations distributed
across a wide-area network.

When an entity changes state, update messages are sent only to
workstations with entities that can potentially perceive the
change - i.e. ones to which the update is visible.
Experiments in the paper show a 40x decrease in message traffic
processed by client workstations during tests with 1,024 entities
interacting in a large densely occluded VE.

RING: A Client-Server System for Multi-
User VEs

Server Server

Server

Fast
Network

Client

B C D
A

A C D
B

A B D
C

A B C
D

Client

Client
Client

RING: A Client-Server System for Multi-
User VEs

Every RING entity is managed by exactly one client
workstation.
Clients execute the programs necessary to generate
behavior for their entities.
In addition to managing their own entities, clients
maintain surrogates for some entities managed by other
clients (remote entities - like dead reckoning “ghosts” of
the SIMNET and DIS standard).
Communication between clients is managed by servers.

Again, this is the ideal organization for revenue generating
networked games and it is not surprising to see a phone
company developing such ideas.

RING: A Client-Server System for Multi-
User VEs

The primary advantage of the RING system design is
that the storage, processing, and network bandwidth
requirements of the clients workstations are not
dependent on the number of entities in the LSVE.
Client workstations must store, simulate, and process
update messages only for the subset of entities visible to
one of the client’s local entities.

So this can be a low-cost $500 home box...
Another advantage of the architecture is that high-level
management of the VE can be performed by servers
without the involvement of every client.

For instance, adding/removing an entity to/from the VE
requires the notification of only one server.
That server handles notification of other servers & clients.

RING: A Client-Server System for Multi-
User VEs

Disadvantages of RING: extra latency is introduced
when messages are routed through servers.

Sometimes messages are routed through multiple servers.
Also computation at the server is a bottleneck.

Tests performed - 16 clients with varying numbers of
servers (1 to 16) with 256 entities distributed across all
clients and servers --> real-time.

The MERL Implementation - Diamond
Park

The MERL Diamond Park VE is built using SPLINE
(Scalable PLatform for INteractive Environments) which
provides the implementation of locales & beacons.
Diamond Park has multiple users that interact in the
park by riding around on bicycles and talking to each
other (Social VR).

MERL Efforts in Large-Scale Multi-User
VEs

Locales are an efficient method for managing the flow of
data between large numbers of users in a LSVE.
The concept of locales is based on the idea that while a
VE may be very large, most of what can be observed by
a single user at a given moment is local in nature.
Locales divide a VE into compact regions that can be
process separately. Here’s how:

Separate multicast addresses - each locale is associated with a
separate communication channel. This makes it possible for a
process to attend to what is happening in some locales without
expending any resources on the locales that are being ignored.

MERL Efforts in Large-Scale Multi-User
VEs

Separate coordinate systems - each locale has its own coordinate
system. This gives the effect of always having high precision in
whatever locale is the current focus of attention, with gradually
decreasing precision for locales that are distant from the current
focus of attention.
Arbitrary geometry - rather than cutting up a VE by some
regular pattern, locales are a basis for constructing a VE from
pieces. The shape, size and relative orientation of individual
pieces can be chosen freely based on whatever is most
convenient from the perspective of designing the individual
pieces themselves. This facilitates the combination of many
pieces designed by many people into an LSVE.

MERL Efforts in Large-Scale Multi-User
VEs

Beacons - are a special class of objects that can be located
without knowing what locale they are in (to solve the
“how do I join the VE problem”).
Beacons act as a content-addressable index from tags to
the multicast address of locales. They make it possible to
decide what locales to attend to based on what the
locales contain.
Beacons broadcast messages about themselves via the
multicast address of the locale they are in AND they
broadcast messages about themselves via a special
beacon multicast address.

To ensure that this mechanism is scalable to large VEs, a large
number of potential beacon multicast addresses are provided.

MR Toolkit Peers Package
Another early effort in networked virtual environments is
the MR Toolkit Peer Package (MR-TPP), an extension of
the University of Alberta’s MR (minimal reality) Toolkit
[Shaw1993].
MR-TPP is based on User Datagram Protocol (UDP)
packets for network communication.
MR-TPP has a software architecture in which local copies
of shared data are maintained in a distributed fashion.
MR-TPP maintains a complete graph connection topology,
which means that each MR process that wishes to
communicate with other processes must open a
connection.
In the MR-TPP architecture, there is apparently no notion
of predictive modeling similar to DIS’ dead-reckoning.

CAVERNsoft/QUANTA

C++ toolkit for building
Tele-Immersive applications
with special emphasis on
networking
Client-server topology
Higher-level networking and
database APIs & Tools for
application developer
modules
Available for Windows, SGI
IRIX, Linux, FreeBSD, Sun
Solaris, HP Unix, WinCE
Graphics support for IRIS
Performer

Low-Level Components
Most of these capabilities have demo programs
TCP, UDP, multicast, HTTP
UDP reflector and multicast bridge
TCP reflector
Remote procedure calling (RPC)
Remote File I/O
Client/Server Databases
Parallel Socket TCP
Reliable Blast UDP (RBUDP)
Cross-platform Data Conversions
Mutual exclusion and threading
Performance Monitoring- Netlogger compatible
Implemented across SGI, Windows9x/NT/2000, Linux,
FreeBSD

High-Level Developer Modules

Audio streaming
Base and Articulated avatars
VR navigation and collision detection
VR picking and moving
VR network dynamic coordinate system
VR menus
Speech recognition with IBM ViaVoice
Collaborative Animator
Collaborative application shell to jumpstart
development

Initialization & Release

QUANTAinit()
QUANTAexit()

Call these before program initialization and after the
main loop has terminated
Note that creating your own classes which use
QUANTA will need to keep in mind the timing of
QUANTAinit() calls.

TCP Socket Modules

Reliable transmission of data over socket connections

QUANTAnet_tcpClient_c
QUANTAnet_tcpServer_c

Sample TCP Client Code

client->connectToServer(ipAddr 20000);

status = client->write(
sendBuffer, // data to transmit
&dataSize, // size of the data
QUANTAnet_tcpClient_c::BLOCKING);

status = client->read(
receiveBuffer, // buffer for reading
&dataSize, // size of the data
QUANTAnet_tcpClient_c::BLOCKING);

See demos/network/tcp

Sample TCP Server Code

aClient = server->checkForNewConnections();
if (aClient)

// register a new client

for (every client)
status = client->read(

receiveBuffer[clientNumber],
&dataSize,
QUANTAnet_tcpClient_c::BLOCKING);

Maintain a list of all clients
Check each client for data transmissions

UDP Socket Modules

Unreliable transmission of data over socket connection
See demos/network/udp

QUANTAnet_udpClient_c
QUANTAnet_udpServer_c

UDP and TCP Data Reflection

Clients send packets to the server, which in turn reflects
those packets automatically to all other connected clients
TCP reflector imposes “packet” boundaries
QUANTAnet_tcpReflector_c
QUANTAnet_udpReflector_c

server

client

client client

client

Sample TCP Reflector Code

server = new QUANTAnet_tcpReflector_c;
server->init();
server->interceptNewConnection(

newclientcallback, NULL);

while(1) {
server->checkForNewClients();
server->process();

}

Unreliable Multicasting

Allows for direct control over multicast connections
QUANTAnet_udpReflector_c provides bridging
between 2 multicast domains

QUANTAnet_mcast_c

Bridge with udp

Mcast group
Mcast group

Parallel TCP Connections
Multiple sockets are used concurrently to increase the
data transfer rate
Solve Long Fat Network problem without having to set
TCP Window Size to Bandwidth Delay Product

QUANTAnet_parallelTcpServer_c
QUANTAnet_parallelTcpClient_c

client->connectToServer(
iRemoteName, // remote server
iRemotePort, // remote port
iPSocketSize); // number of sockets

Reliable Blast UDP (RBUDP)

RBUDP - An old idea that may be useful now that
networking bandwidth is increasing
Use UDP for bulk data transmission rather than TCP
If bandwidth can be guaranteed by QoS –reliability will
be high- chances of errors will be few

QUANTAnet_rbudpReceiver_c
QUANTAnet_rbudpSender_c

Datapacking

Cross-platform data-packing class, for 32, n32 and 64 bit
systems
Takes care of Little Endian and Big Endian conversions
Now has new array data packing methods

QUANTAnet_datapack_c

Database / Persistence Distributed Shared
Memory

Data transmission is managed by path and key names
Paths group similar types of data
Keys are the individual packets of data

Cross-platform data-packing class
Provides persistent data!
Persistence allows asynchronous retrieval of the state of
the environment.
Load from the database at program startup, save to the
database at program exit

QUANTAdb_client_c
QUANTAdb_server_c

Shared State

Encapsulates cross-platform network transmission of
state information
Intended to allow for transparent sharing

QUANTAdb_sharedState_c

state.packAndSendState(); //packs the object state
and transmits it to the database server

state.unpackState(char *buffer); // unpacks the object
state from the data buffer

A Brief Timeline of Networked-VEs

1980 1985 1990 1995

SI
M

N
ET

 S
ta

rt
 (8

3)

SG
I F

lig
ht

 (8
4)

SG
I D

og
fig

ht
 (8

5)

A
m

az
e

(8
4)

SI
M

N
ET

 F
irs

t D
em

o
(8

6)

N
PS

 F
O

G
-M

 (8
6)

N
PS

 V
EH

 (8
7)

N
PS

 M
PS

-1
 (8

8)

SI
M

N
ET

 to
 A

rm
y

(9
0)

N
PS

N
ET

-1
 (9

0)

B
ric

kN
et

(9
1)

D
IS

 (9
3)

D
IV

E
(9

2)
N

PS
-S

te
al

th
 (9

3)

N
PS

N
ET

-IV
 (9

3)
D

oo
m

 (9
3)

Pa
ra

di
se

 (9
3)

C
A

VE
R

N
So

ft
(9

7)

M
U

D
 (7

8)

78

References
Carlsson C. & Hagsand, O. DIVE - A platform for multi-user virtual
environments, Computers & Graphics, 17(6), 663-669, 1993.
Gossweiler, R. et al., An Introductory Tutorial for Developing
Multiuser Virtual Environments, Presence 3(4), 1994, pp. 255-264.
Funkhouser, Thomas A. “RING: A Client-Server System for Multi-
user Virtual Environments,” Proceedings of the 1995 Symposium on
Interactive 3D Graphics, Monterey, April 1995, pp. 85-92.
Funkhouser, Thomas A. “Network Topologies for Scalable Multi-
User Virtual Environments,” Proceedings of the 1996 VRAIS
Conference, April 1996, pp. 222- 228.
Barrus, John, Waters, Richard and Anderson, David B. “Locales and
Beacons: Efficient and Precise Support for Large Multi-User Virtual
Environments,” Proceedings of the 1996 VRAIS Conference, April
1996, pp.204-213.
Leigh, J., Johnson, A., Brown, M., Sandin, D., DeFanti, T.,
Visualization in Teleimmersive Environments. In IEEE Computer,
December, 1999, pp. 66-73

