Display & Rendering

071011-1 2017년 가을학기 9/27/2017 박경신

Human Perception System

- □ Obtain information about environment through senses:
 - Vision: primary form of perception in most VR
 - Audition: second most common in VR
 - Haptic/Touch: perceptible on through direct contact
 - Olfaction
 - Gustation
 - Vestibular/kinesthetic sense
- VR systems mimics the senses by output of computergenerated stimuli rather than natural stimuli to one or more of these sense.

Vision

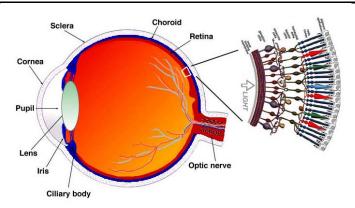


Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

Image from http://webvision.med.utah.edu/sretina.html

Audition

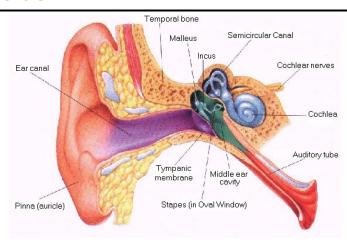


Image from http://www.infj.ulst.ac.uk/~pnic/HumanEar/ Andy's%20Stuff/MScProject/workingcode_Local/EarChapter.html

Touch

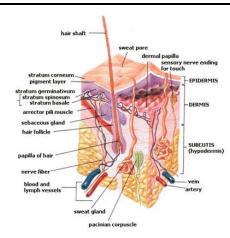


Image from http://en.wikibooks.org/wiki/Human_Physiology/Print_Version

Olfaction

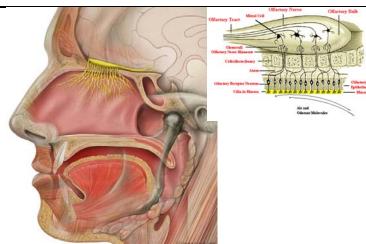


Image from http://en.wikibooks.org/wiki/Human_Physiology/Print_Version

Gustation

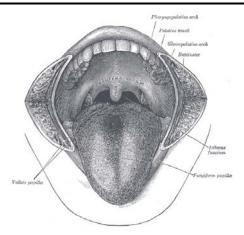


Image from http://en.wikibooks.org/wiki/Human_Physiology/Print_Version

Visual Displays

- □ Fishtank VR stationary display
- Projection VR stationary display
 - Surround-screen displays
 - Tabletop displays
 - Wall displays
- Occlusive head-based display
 - Head-mounted display (HMD)
 - Binocular mono-oriented monitor (BOOM)
- Nonocclusive head-based display
- Hand-coupled display

Visual Display Presentation Qualities

Color

- mostly trichromatic color
- monochromatic color in some displays e.g. see-through HMD
- field-sequential color display overlays the three colors in same location

Spatial resolution

- number of pixels
- pixel density

Contrast/Brightness

- dynamic range of the display
- LCD displays tend to have lower contrast than CRTs
- See-through HMD requires brighter display

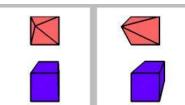
Visual Display Presentation Qualities

■ Focal distance

- distance at which images seem to appear
- typically the screen in stationary displays
- can be infinite via optics in an head-based display

Opacity

- occlude the real world or not
- CAVE does not occlude the real world
- most HMDs occlude the real world
- see-through HMD is generally used for AR applications


Masking

- hiding things behind an object
- a problem when a virtual object comes between the viewer's eyes and a physical object
- physical objects (e.g. user hand) mask virtual objects in stationary displays

Visual Display Presentation Qualities

Number of display channels

- two for stereoscopic displays
- sometimes two display channels, but the same image on both
- many ways to transmit multiple channels: color (anaglyph), polarization, time-multiplexing, spatial-multiplexing
- can combine techniques to introduce more channels (perhaps for two viewers) – e.g. Fakespace DuoView

Visual Display Presentation Qualities

□ Field of view

- measure of the angular width of user's vision
- typical HMDs cover about 100 degree FOV with about 60 degree stereo overlap FOV

■ Field of regard

- amount surrounding space where virtual world is displayed
- HMDs are typically 100%
- CAVEs are often much less (except for 6-sided CAVEs)

Head position information

- typically position trackers monitor six degree of freedom (DOF) of the participant's head
- 3-DOF orientation is needed for HMDs
- 3-DOF location is needed for stationary displays

Visual Display Presentation Qualities

- Graphics latency
 - lag between user movements and the update of the display
 - source of causing nausea or headaches
 - lag is very noticable when rotating head in HMD
 - lag is less noticable when rotating head in CAVE
- □ Temporal resolution (frame rate)
 - image updates per second (measured as FPS or Hz)
 - motion pictures capture 24 FPS
 - 15 Hz is considered marginally acceptable
 - 10 Hz and below causes brain to notice that it is seeing a series of still images

Logical Qualities of Visual Displays

- Associability with other sense displays
 - headphones and HMDs work well together
- Portability
 - large stationary displays are not portable
 - e.g. HMD vs. CAVE

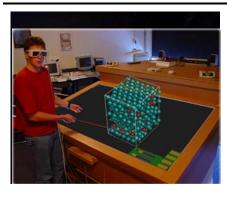
Logical Qualities of Visual Displays

- User mobility
 - can effect on mental immersiveness and usefulness of user VR experience
 - e.g. cables that tether the user, tracking systems with limited range, or screens that prevent further physical movement
- Interface with tracker methods
 - type of displays can influence the selection of tracking methods
- Environment requirements
 - conditions of the surrounding space necessary to provide a good VR experience
 - projection-based displays require low light
 - CAVE requires big rooms

Logical Qualities of Visual Displays

- Throughput
 - HMDs often requires a minute or two to change viewers
 - easier for people to enter and exit a CAVE
- Encumbrance
 - generally more wires associated with HMDs
- Safety
 - eye fatigue and nausea can result from poor optics
 - can't see what you're doing in real world in an occlusive HMDs
- Cost
 - generally head-based displays tend to be lower priced than large-screen projection systems
 - CAVE requires more graphics power

Monitor-based or Fishtank VR


- □ Use standard computer monitor
- Differ from generic interactive 3D graphics displayed on a monitor because render scenes based on the user's head tracking data
- Fewer components & lower cost
- Standard interface devices available (keyboard, mouse)
- □ Limited FOV & FOR
- □ Generally less mentally immersive

Projection-based VR: Surround-screen displays

- Mostly rear-projected to avoid the participants casting shadows on the screen
- □ Larger more costly displays
- □ Longer range tracking systems
- □ Greater FOV & FOR
- Not isolated from the real world
- Multi-viewers friendly
- Not very encumbering
- Less eye strain
- More space required
- More graphics power required
- Occlusion problem

Projection-based VR: Tabletop displays

- Good for direct manipulation
- Good for god's eye view
- Good for changing orientation
- Less immersion than surrounded VR displays

Projection-based VR: Wall displays

- □ 3D movie-like VR displays
- Larger tiled or curved wall displays are suited for larger audiences – larger pixel, need more projectors
- Less immersion than surrounded VR displays
- Problem of seamless integration

Head-based Displays

- □ Small, lightweight screens
- More portable than stationary VR displays
- More encumbering than stationary VR displays
- □ Tethering to computer
- □ 100% FOR
- Limited FOV
- No peripheral vision
- □ Lag in tracking is detrimental
- Eye fatigue

Head-Mounted Displays (HMD)

- e.g. Sony Glasstron
- HMD Vendors at http://www.faqs.org/faqs/virtual-worlds/visual-faq/section-2.html

Head-Mounted Displays (HMD)

□ The best VR headsets 2017 https://www.wareable.com/vr/best-vr-headsets-2017

See-thru Head-based Displays

- Optical see-through vs. video see-through
- □ Require 6-DOF tracking
- Registration of tracking with the real world
- Application must live within the restriction of the real world
- □ Proper rendering of object occlusion is difficult

See-thru Head-based Displays

Handheld VR

- □ Limited example of handheld VR e.g. Chameleon, Virtual binoculars
- Used as a magic lens
- Need to track both the screen and the head
- Registration of tracking with the real world
- Can be used in conjunction with projection-based VR displays

Auditory Displays

- Speakers
- Headphones

Aural Display Presentation Qualities

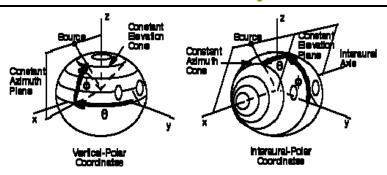
- Number of display channels
 - monophonic
 - stereophonic
 - quadraphonic, octaphonic, 5.1
 - multiple speakers rely on ears to naturally localize sounds
- Sound stage
 - source from which a sound appears to emanate
 - head-referenced vs. world-referenced
 - head-referenced sound stage moves with the head
 - world-referenced sound stage remains fixed with the world
 - sounds require filtering based on head tracking to reproduce a world-referenced sound stage with headphones

Aural Display Presentation Qualities

- Localization (Spatialization)
 - localization is human brain's ability to determine the location from which a sound is emanating
 - spatialization is technology's ability to make a sound appear to come from particular points in space
 - spatialization is easier with headphones due to direct sound control
- Masking
 - loud sounds mask softer sounds
 - physical objects can mask a sound
 - closed headphones are best for VR experience where the participants is only supposed to hear sounds from the virtual world
- Amplification
 - Need to boost the sounds to hearable levels

Simple Virtual Environment Audio

- Intensity fall-off
- □ Headphones also block real-world noises
- Ambient sound in the background
- □ Subwoofer in seat or platform
- □ Present speech instead of text


Logical Qualities of Aural Displays

- Noise Pollution
 - speakers require quiet and echo free environment
- User mobility
 - wired headphones limit mobility
- □ Interface with tracker
 - magnets in the speaker/headphones
- Environment requirements
- Associability with other sensors
 - typically stationary with stationary, head-based with head-based
- □ Portability & Encumbrance
 - speakers generally more comfortable for longer use
- Throughput
 - speakers work better for larger audiences
- Safety & Cost

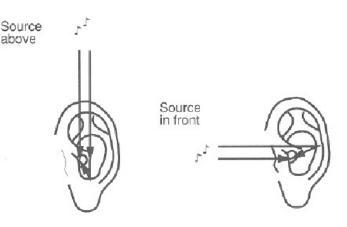
3D Sound Localization

- Spatialization
- Works well in plane of ears
- Based on:
 - Interaural intensity differences (IID)
 - Interaural time differences (ITD)
- Head-Related Transfer Function (HRTF)

Vertical-Polar Coordinate System

 θ : azimuth (angle between the nose and a plane containing the source and the vertical axis z)

 ϕ : elevation (angle between the horizontal plane by a line passing through the source and the center of the head) ρ : range (distance to the source measured along this line)


Elevation Cues

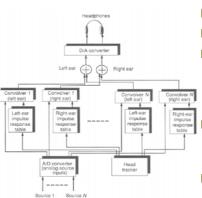
- Different reflections
 - Due to the asymmetry of the outer ear, especially the pinna
 - the path difference between the direct and pinna-reflected sound changes with the elevation angle
 - sound coming from a source located above the user's head has quite a different reflection path than sound coming from a source in front of the user
- Different amplification (and attenuation)
 - by interference between reflected sounds
 - some frequencies are amplified and others are attenuated
- □ Pinna provides the primary cue for source elevation
 - user's face and shoulders geometry also influences the way the sound is reflected towards the outer ear

Azimuth Cues

- □ Interaural time difference (ITD)
 - difference in the arrival time of the sound at the two ears
 - ITD is zero when the azimuth angle is 0 degree, i.e. the source is directly in front of or directly behind the head
 - ITD = $(a/c)(\theta + \sin \theta)$
 - a: the head radius
 - c: the speed of sound (~343 m/s)
 - \bullet : source azimuth
- □ Interaural intensity differences (IID)
 - difference in the intensity of sound reaching the ears
 - the closer ear hears a sound with higher intensity
 - detectable for sounds with high frequencies (>1.5kHz)
 - for low frequency, ITD dominates


Elevation Cues

Range Cues


- Perceived loudness
 - prior knowledge of a given sound source
 - faint siren (which is a normally high-energy sound source) is perceived as being distant
 - clear whisper (which is a normally faint sound source) is perceived as being close
- Motion parallax
 - change in sound source azimuth when the user is moving
 - large motion parallax indicates a source nearby
- Ratio between direct and reflected sound
 - energy of the direct sound drops off with the square of the source range
 - energy of the reflected sound does not change much with range

Head-Related Transfer Functions

- HRTF captures all of the physical cues to source localization
- Experimental measurement of transfer function
 - sounds from speakers at different locations
 - tiny microphones in the ears
 - analysis of recordings from both ears
 - head-related impulse responses (HRIRs)
 - head-related transfer functions (HRTFs)
- Each individual has his/her HRTF signature, also called ear print

Convolvotron

- Crystal River Engineering
- HRTF-based spatial audio system
- The system can be customized for a particular individual by measuring and using that person's HRTF
 - Echoes and room reverberation can be added by including a room simulation model
- Head motion can be accounted for by combining the absolute location of the source with the outputs of a head tracker to select the appropriate HRTFs

Ambisonics

- Presentation of 3D spatialized sound using multiple stationary speakers
- surrounding sound recording, synthesis and playback system

http://en.wikipedia.org/wiki/Ambisonics

Haptic Displays

- Kinesthetic/Force displays
- Tactile displays
- End-effector displays
- Robotically operated shape displays

Haptic Display Presentation Qualities

- Number of display channel
 - how many points of contact with the body
 - 1 channel when Phantom has one point where the user can influence the virtual world
- Degrees of freedom
 - 6-DOF in unconstrained movement
 - 1-DOF display for how far can the thumb be opened/closed
 - 1-DOF display for how far down a tube can you insert a laparoscope camera
 - 2-DOF display for how far down a tube, plus twist
 - 3-DOF display for down, twist, clamping action and resistance
 - 3-DOF display for location of the finger or stylus
 - 6-DOF display for location and orientation

Haptic Display Presentation Qualities

Kinesthetic cues

- nerve inputs that sense angles of joints, muscle length, tension, and resistance to muscle effort (force) within the body
- helps us determine firmness, approximate shape, and physical force

□ Tactile cues

- sensory receptors at the skin
- mechanoreceptor shape and surface texture
- thermoreceptor heat
- electroreceptor electric current flow
- nociceptor pain

Grounding

- force/resistance displays require an anchor
- self-grounded vs. world-grounded

Haptic Display Presentation Qualities

■ Form

- the shape of the physical unit with which the user interacts
- generic form, such as stick, ball, or plane
- specific object, such as handgun, or steering wheel
- amorphous that changes shape to multiple specific representations

Fidelity

- how rapidly the system can change to the proper display (force, temperature)
- can be rated by a maximum stiffness measurement taken in Newtons/meter (Nt/m)
- a stiffness of 20 Nt/cm as a solid immovable wall
- 40 Nt/cm is the maximum force that a human finger can exert
- 10 Nt/cm is the highest force used when doing fine manipulation

Haptic Display Presentation Qualities

- Spatial resolution
 - higher resolution required at the fingertip
 - fingertips can sense difference 2mm apart
 - 30 mm on the forearm & 70 mm on the back
- Temporal resolution
 - how quickly the system can be updated to new display
 - low frame rate on a force display causes the object to be perceived as shakey
 - 1000 Hz is a good minimum
- Latency tolerance
 - low latency display is crucial, especially for force display
- Size
 - larger displays allow broader range of motion

Tactile Displays

Teletact Glove

- □ Sensed by the skin the largest single organ of the human body
- Actuators mounted generally on the fingers and hand
- □ Generally no need for world grounding
- Bladder actuators
- Vibrator actuators
- Pin actuators
- Thermo actuators
- Helps in the fine manipulation of virtual objects
- □ Less expensive & portable

Logical Qualities of Haptic Displays

- User mobility
 - world-grounded displays require the user to be near the device
- □ Interface with tracker
 - responsive and accurate tracking system is required
- Environment requirements
- Associability with other sense displays
 - occlusive HMDs often are used in conjunction with haptic displayss
- Portability
- Throughput
- Encumbrance
 - self-grounded, exoskeleton-style devices are generally much encumbering
- Safety
 - safety is a significant concern with many haptic displays

Tactile Displays using Vibrators

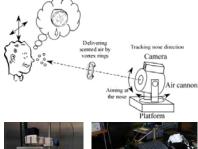
Cricket Prob


End-effector Displays

Rutgers Dextrous Master

- A mechanical device that provides a force to the participant's extremities
- Generally linked to mechanical tracking sensors
- Generally world grounded (exoskeleton method is bodygrounded)
- Often operate with respect to a single point in the virtual world
- Fast and accurate tracking is usually built into display

Robotically Operated Shape Displays


Cybernetic Systems

- Use robots to place a representation of the virtual world where the user is reaching
- May be generic (corners and edges) e.g. Cybernetic Systems
- May be specific (selection of switches) e.g. Boeing
- □ Usually uses a finger surrogate for fast tracking
- Can provide a very realistic haptic display
- World-grounded display
- Works with HMDs

Olfactory Displays

- □ Very little research is done in olfaction
- Lack of effective displays and difficulty in producing broad range of stimuli
- □ Olfactory events (odor sources) may be near or far, but directional sensitivity is generally poor
- □ Temporal sensitivity is poor and response times are slow
 - May need 20-60 seconds between stimuli to resolve different smells
 - To control over stimulus decay rate (without significant air circulation)
- Smell synthesis
- Require chemicals
- Olfactometer
- Smell-O-Vision

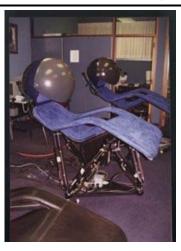
Olfactory Displays

- ATR Scent Projector
 - Projection-based olfactory display with nose tracking
 - Unencumbering: Users do not need to wear any devices or glasses
 - Localized: Scent can be perceived only within a limited range of space at a certain time
 - Composed of "air cannon", scene generator (aroma diffuser), 2DOF platform and a CCD camera

Image from http://www.mis.atr.jp/past/sem/scent.html

Olfactory Displays

- Wearable Olfactory Display by U. of Tokyo
 - odor-generating unit (airpump & odor filters)
 - odor-controlling unit (a notebook PC and a device controller)
 - odor-presenting unit (to present the mixing of odor air)


Gustatory Displays

- Affected by other senses strong influence of smell on taste
- Need more than flavor e.g. texture
- Basic elements of taste salt, sour, bitter, sweet, umami, smell

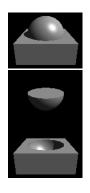
Food Simulator Image from http://www.siggraph.org/s2003/conference/etech/food.html

Vestibular Displays

- □ Physically move the user e.g. motion platform
- Sense of body movements or acceleration
- Vestibular information works together with visual and kinesthetic information
- Virtual body representation
- Can "display" to these senses by stimulating the proper parts of the brain

Rendering Systems

- Visual
- Aural
- Haptic


Visual Rendering Systems

- Computer graphics
 - generating visual imagery
- Software rendering
 - graphical rendering routines
- Object presentation schemes
 - Geometrically based (polygons, NURBS, CSG)
 - Non-geometric forms (volumetric rendering, particle systems)

Geometrically-based Representations

- Polygons
- □ Constructive Solid Geometry (CSG)
- □ Non-Uniform Rational B-Splines (NURBS)
- Other representations are often converted to polygons for hardware rendering

Non-geometrically-based Representations

- Volume rendering
- Particle systems

Techniques for rendering complex visual scenes

- Shading
- Reducing polygons:
 - Texture mapping
 - View culling
 - Level of Detail (LOD)
 - Atmospheric effect, e.g., fog
- Multiplexing multiple renderers to one screen:
 - Added cost of additional rendering systems
 - Decrease average image latency for each frame
 - Does not decrease onset latency
 - Reduces the maximum delay between the input and the response

Internal Computer Representation

- Most hardware graphics rendering engines are optimized for polygonal representation
- 3D models created by a model package, Alias, SoftImage, AutoCAD, VRML
- A scene graph is a mathematical graph that allows objects and object properties (colors, materials, textures) to be related to one another in a hierarchical fashion.

Techniques for Rendering Complex Sounds

- Frequency modulation (FM)
- Algorithmic additive and subtractive techniques
- Granular synthesis
 - Combining the sound of a single drop of water falling to produce the sound of a waterfall
- Sonic effects
 - Convolution making a sound appear to come from a particular location
 - Reverberation using reflections of the sound
 - Chorusing mixing sounds

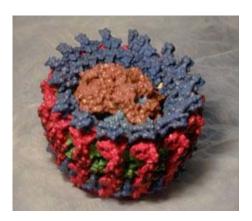
Aural Rendering Systems

Sampling

- A common way of producing sounds
- Playback of digitally recorded samples of physical world sounds
- 8 KHz telephone, 44 KHz CD, 96 KHz DVD quality

Sound synthesis

- Spectral method using sound wave's frequency spectrum
- Physical model using physics of the object generating sound
- Abstract synthesis is to create sound using some numerical system


Haptic Rendering Systems

- Thermal rendering usually used on Peltier thermoelectric coolers
- □ Pin-based rendering
- Kinesthetic rendering using force display
- Robotically operated shape display
- Physical object rendering -3D hardcopy, aka stereolithography

Stereolithography

http://en.wikipedia.org/wiki/Stereolithography

Haptic Rendering Techniques

- Spring and dashpot
 - controls direction, tension, and damping
- □ Point and plane & Multiple plane
 - interaction between a probe stylus and a surface by placing a virtual planer surface tangential to the probe's tip
- Point to point
- Multi-springs
 - adds torque to any of the other haptic representations
- Inertial and resistant effects
 - resistive forces to add friction and viscosity
 - inertial force to add momentum
- Vibration
 - a signal indicating when the display should vibrate and at what frequency and amplitude

Techniques for rendering complex haptic scenes with force displays

Laparoscopic surgery interface

- Single point of contact with an object
 - E.g. to a fingertip or tip of a stylus
 - Required 3-DOF force display
- Single point of contact with torque
 - Required 6-DOF force display
- Constraint of movement
 - E.g. laparoscopic
- Two points of contact (pinching)
 - Multiple points of contact (grasping)

Reference

- An Interactive Introduction to Splines http://www.ibiblio.org/e-notes/Splines/Intro.htm
- □ Haptic Community Web Site http://haptic.mech.northwestern.edu/
- □ 3D audio http://www.dcs.gla.ac.uk/research/gaag/dell/report.htm
- □ VR audio http://vrlab.epfl.ch/~thalmann/VR/VRcourse_Audio.pdf
- □ Scent http://www.mis.atr.jp/past/sem/scent.html