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What is Collaborative Virtual Environment?

 A software system in which multiple users interact with 
each other in real-time, even though those users may 
be physically located in distant places. 

 Typically, each user accesses his/her own computer 
workstation or console, using it to provide a user 
interface to the content of a virtual environment.

 These environments usually aim to provide users with 
a sense of realism by incorporating realistic 3D 
graphics, spatial sound & other modalities to create an 
immersive experience.



Characteristics of CVE

 Shared sense of space
 Shared sense of presence
 Shared sense of time
 A way to communicate
 A way to share



CVE Examples

 MUDs & MOOs starting in late 1970s
 Networked Games

 DOOM, SGI Flight & Dogfight

 VRML-based Online Community 
 Active World, Blaxxun, Sony’s Community Place, Open 

Community, Vnet , Second Life (late 1990s and early 2000s)

 MMORPG (Massively Multiplayer Online Role Playing 
Games) from early 2000s to the present

 Networked/Collaborative Virtual Environments
 SIMNET/Distributed Interactive Simulation (DIS)/NPSNET 1995
 DIVE
 BrickNet
 MR Toolkit
 Diamond Park
 CAVERNsoft



MUDs & MOOs

 MOO (MUD, Object-Oriented) & MUD 
(Multi-User Domain)  

 Text-based virtual reality environment
 Originally designed as a form of the 

Dungeons and Dragons game
 Developed for multi-users on the 

Internet 
 Allows users to interact both with their 

environment and with other users
 Descriptions of real and imagined areas 

such as forests, dungeons, offices, 
universities, cities, rooms, or any other 
spatially oriented environment

 Communication commands are 
modeled on real life, with “say”, “tell”, 
“whisper” and “shout”



Doom
 Dec 1993, id Software released its 

shareware game, Doom. 
 Startup into the business of providing 

online gaming networks.  
 The posting of Doom caught most 

network administrators’ eyes when their 
LANs started bogging down. Doom 
flooded LANs with packets at frame rate.

 This networked ability to blast people in 
a believable 3D environment created 
enormous demand for further 3D 
networked games.  

 An estimated 15 million shareware copies 
of Doom have been downloaded around 
the world, passed from player to player 
by floppy disk or online networks.



VRML-based Collaborative Virtual 
Environments

 Internet-based collaborative 
virtual environments will 
impact the greatest number of 
people. 

 Examples are Active World, 
Blaxxun, Sony’s Community 
Place, Open Community, Vnet

 Also, online gaming systems
 Problems of latency, rendering, 

inconsistency, lack of 
interaction



Second Life

 Second Life is an online 3D 
virtual world community, 
developed by Linden Lab 
and modelled after the 
Metaverse of Snow Crash.

‘Dokdo is Korea Territory!’ in Second Life
www.serakorea.com



MMORPG

 Massively multiplayer online 
role-playing game (MMORPG) 
is a genre of computer role-
playing games, in which a 
large number of players 
interact with one another in a 
virtual world.

 Richard Garriott, the creator 
of Ultima Online, coined the 
term MMORPG.

 Popular examples are 
Neverwinter Nights, Ultima
Online, EverQuest, Blizzard’s 
World of Warcraft. 

Ultima Online



SIMNET (Simulator Networking)

 SIMNET (simulator 
networking) is a 
distributed military 
virtual environment.

 The goal was to 
develop a “low-cost” 
networked virtual 
environment for 
training small units to 
fight as a team.

 SIMNET project created 
an 11-site testbed with 
from 50 to 100 
simulators at each site.
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SIMNET Architecture

 The SIMNET network software architecture has three basic 
components 
 An object-event architecture
 A notion of autonomous simulation nodes 
 An embedded set of predictive modeling algorithms called “dead 

reckoning” 

 Object-event architecture
 The world as a collection of objects whose interactions with each 

other are just a collection of events. 
 Objects are the vehicles and weapons systems that can interact 

across the network.
 Events are messages indicating a change in world or object state.



SIMNET Architecture

 Autonomous simulation nodes
 Individual players (vehicles and weapons) on the network are 

responsible for placing messages, or packets, onto the network to 
accurately represent their current state. 

 Packet recipients are responsible for receiving such state change 
information and making the appropriate changes to their local 
model of the world. 

 Heartbeats: usually every 5 seconds, to keep other players 
informed that a particular object is alive in the system. 

 Dead reckoning
 Objects only place packets onto the network when their home 

node determines that the other nodes on the network are no 
longer able to predict their state within a certain threshold amount.



SIMNET Scalability

 The SIMNET network software architecture proved scalable 
with an exercise in March of 1990 having some 850 
objects (1 packet per sec) at five sites, with most of those 
objects being semi-automated forces.

 Objects in that test averaged one packet per second, with 
each packet being some 156 bytes in size for a peak 
requirement of 1.06 Mbits/second, just under the T-1 
speed(1.544 Mbps) of the connecting links.



Distributed Interactive Simulation (DIS)
 Fully distributed heterogeneous 

network software architecture
 The environment can include 

virtual players (driven by a live 
human at a computer console 
of some sort), constructive 
players (computer-driven 
players), and live players (actual 
weapons systems plugged into 
the DIS network).

 The US Army's Close Combat 
Tactical Trainer (CCTT) is one of 
the larger scale networked 
virtual environments.



Distributed Interactive Simulation (DIS)

 DIS is a direct descendent from SIMNET but has packets 
that are more general than SIMNET’s. 

 DIS has three basic components
 Object-event architecture
 Notion of fully distributed simulation nodes
 Embedded set of predictive modeling algorithms for “dead 

reckoning”
 The core of the DIS network software architecture is the 

data sharing via Protocol Data Unit (PDU).
 The DIS (IEEE 1278) standard defines 27 different PDUs, 

only four of which (Entity State, Fire, Detonation, and 
Collision) are used by nodes to interact with the virtual 
environment.
 A demonstration at the 1993 showed that Entity State PDUs 

comprised 96% of the total DIS traffic. 
 Remaining 4% distributed mainly amongst Transmitter (50%), 

Emission (39%), Fire (4%), and Detonation (4%). 



NPSNET
 To implement a large-scale networked virtual environment 
 NPSNET-1,2&3

 NPSNET-1 was demonstrated live at the SIGGRAPH 91
 NPSNET-1 did not use dead-reckoning. NPSNET-1 flooded the 

network with packets at frame rate.
 NPSNET-2 and 3 were utilized to explore better, faster ways to do 

graphics, and to extend the size of the terrain databases possible.

 NPSNET IV
 NPSNET-IV was DIS-compliant, dead-reckoned and had spatial 

sound. 
 NPSNET-IV has interoperated with almost every DIS-compliant 

virtual environment ever constructed. 

 NPSNET-IV Capabilities
 Building walkthroughs, Articulated humans, Networking - play 

across the multicast backbone of Internet.



NPSNET-IV



NPSNET-IV



DIVE

 The Swedish Institute of 
Computer Science’s 
Distributed Interactive Virtual 
Environment (DIVE) is another 
early and ongoing academic 
collaborative virtual 
environment.

 DIVE has a homogeneous 
distributed database like 
SIMNET and DIS-compliant 
systems.

 Unlike SIMNET, the entire 
database is dynamic and uses 
reliable multicast protocols 
to actively replicate new 
objects.



DIVE

 A disadvantage with this 
approach is that it is difficult 
to scale-up because of the 
communications costs 
associated with maintaining 
reliability and consistent 
data.

 For example, modeling 
terrain interactions, such as 
building a bern, still would 
be very expensive (though 
highly desirable) in terms of 
the number of polygons that 
would need to be created, 
changed, and communicated 
in DIVE.



BrickNet
 BrickNet is developed by the 

Institute of Systems Science at 
the National University of 
Singapore.

 A client-server model in which 
the database is partitioned 
among clients.

 Communication is mediated by 
central servers.

 For example, as an entity 
moves through the VE, its 
database is updated by an 
object-request broker on a 
server that has knowledge of 
which client maintains that part 
of the world.

S1

S2 S3

Clients of S1

Clients of S3Clients of S2

Server
Communication



Diamond Park
 Mitsubishi Diamond Park has 

multiple users that interact in 
the park by riding around on 
bicycles and talking to each 
other (Social VR)

 The MERL Diamond Park VE is 
built using SPLINE (Scalable 
PLatform for INteractive
Environments) which provides 
the implementation of locales 
& beacons.

https://www.youtube.com/watch_pop
up?v=duzn3ULqS-A



Diamond Park/SPLINE
 Locales are an efficient method for managing the flow of 

data between large numbers of users in a large-scale VE
 The concept of locales is based on the idea that while a VE 

may be very large, most of what can be observed by a 
single user at a given moment is local in nature.

 Each locale is associated with a separate communication 
channel, and each locale has its own coordinate system.

 Beacons are a special class of objects that can be located 
without knowing what locale they are in (to solve the “how 
do I join the VE problem”).

 Beacons act as a content-addressable index from tags to 
the multicast address of locales. They make it possible to 
decide what locales to attend to based on what the locales 
contain.



CAVERNsoft/QUANTA



 C++ toolkit for building Tele-Immersive applications 
with special emphasis on networking

 Client-server topology
 Higher-level networking and database APIs and tools 

for application developer modules
 Available for Windows, SGI IRIX, Linux, FreeBSD, Sun 

Solaris, HP Unix, WinCE
 Graphics support for IRIS Performer

CAVERNsoft/QUANTA



Low-Level Components
 Most of these capabilities have demo programs
 TCP, UDP, multicast, HTTP
 UDP reflector and multicast bridge
 TCP reflector
 Remote procedure calling (RPC)
 Remote File I/O
 Client/Server Databases
 Parallel Socket TCP
 Reliable Blast UDP (RBUDP)
 Cross-platform Data Conversions
 Mutual exclusion and threading
 Performance Monitoring- Netlogger compatible
 Implemented across SGI, Windows9x/NT/2000, Linux, 

FreeBSD



High-Level Developer Modules

 Audio streaming
 Base and Articulated avatars
 VR navigation and collision detection
 VR picking and moving
 VR network dynamic coordinate system
 VR menus
 Speech recognition with IBM ViaVoice
 Collaborative Animator
 Collaborative application shell to jumpstart 

development



A Brief Timeline of Networked-VEs
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Challenges of CVE Design & Developments

 Network Bandwidth
 Heterogeneity
 Distributed Interaction
 Real-time System Design and Resource Management
 Failure Management
 Scalability
 Deployment and Configuration



Network Model: Centralized

 Client-server model
 One computer (server) 

collects all data and sends 
updates to the users 
(clients)

 Simple structure, easy to 
maintain database (useful 
for compression & admin 
tasks)

 Not scalable, the central 
server is the bottleneck

server

client

client

client

client



Network Model: Distributed

 Peer-to-peer model
 Each user maintains its 

own copy of the 
database

 Updates are send to 
other users

 Difficult to manage the 
number of connections

 Not scalable, the 
network is the 
bottleneck

client

client

client

client



Network Model: Hybrid

 Multi-players client-server 
model with multiple servers

 If we are using a 
multiplayer videogame 
service company 

server

client

client

client

client

server

server

client

client



How to avoid bottlenecks?

 Better communication models
 Reduce number of connections and messages

 Better database models
 Distributed databases

 Better decision making
 Make it distributed but any given decision is made in only 

one place 



Broadcast Communication

 The message is sent to all 
users (and non-users)

 Not selective
 Floods network with packets
 All packets must be brought 

up through the kernel of the 
operating systems of all 
users

 Even if the packet is not for 
that machine! Thereby, 
wasting CPU time.

network

client

client

client

client

Non-
client

Non-
client

Non-
client



Multicast Communication

 The message is sent to the 
multicast group (and 
therefore to all group 
members)

 Non-users (non-group users) 
do not receive messages

 Multicast services allow 
arbitrarily sized groups to 
communicate on a network 
via a single transmission by 
the source.

 Can inter-network (route over 
the network layer) with 
multicast.

network

client

client

client

client

Non-
client

Non-
client

Non-
client



What is Dynamic Shared State?

 The dynamic information that multiple hosts maintain CVE
 Accurate dynamic shared state is fundamental to creating 

realistic virtual environments. It is what makes a VE “multi-
user”.

 Management is one of the most difficult challenges facing 
the CVE designer. The trade off is between resources and 
realism.

 Network latency problem
 For a highly dynamic shared state, hosts must transmit 

more frequent data updates.
 To guarantee consistent views of the shared state, hosts 

must employ reliable data delivery.



Managing Shared States

Shared Repositories Dead Reckoning

Techniques

More DynamicMore Consistent

Blind Broadcast



Shared Repository

 Maintain shared state data in a centralized location.
 Protect shared states via lock manager to ensure ordered 

writes.
 Shared File Directory

 Absolute Consistency! 
 Only one host can write data to the same file at a time. Must have 

locks. Hence, does not support many users.

 Server Memory
 Faster than Shared file because each host uses does not have to open

and close each file remotely.
 Don’t have to have locks. Server arbitrates. Server crash is catastrophic
 Maintaining constant connection may strain server resources.

 Virtual Repository
 Tries to reduce bottleneck at server. Better fault tolerance.



 Owner of each state transmits the current value 
asynchronously and unreliably at regular intervals.

 Clients cache the most recent update for each piece of the 
shared state.

 Hopefully, frequent state update compensate for lost 
packets.

 Broadcast is sent “blind” to everyone.
 No acknowledgements, No assurances of delivery, No 

ordering of updates.
 Used where it may not have demanding consistency 

requirements.
 Each host takes explicit ownership of one piece of the 

shared state (usually the user’s avatar).
 Commonly used in online game (Doom, Diablo)

Frequent State Regeneration/Blind 
Broadcasts



Dead-reckoning

 The objects and ghosts 
paradigm

 An algorithms to reduce 
number of messages

 Instead of sending frequent 
updates on object’s 
position, it is calculated 
locally using a last-known 
velocity and position

 No need for central server
 Sacrifices accuracy of 

shared state for more 
participants

Dead Reckoned Path

Actual Entity Path

Update message 
received



Dead-reckoning

 Implementation:
 Every user has a copy of the database
 Each user is in charge of moving all of the objects within its 

database
 Direct control (“live” object)
 Dead-reckoning (“ghost” object)

 Dead-reckoning is used on “live” objects when difference from 
direct control is significant, updates are sent.

 Characteristics:
 Reduces bandwidth
 Live and ghost objects have different update rates, prediction and 

convergence needed (I.e. no guarantee that all users have identical 
state about each object)

 Requires customization based on object behavior



Dead Reckoning

 Advantages
 Reduces bandwidth requirements because updates are sent less 

frequently.
 Potentially larger number of players.
 Each host does independent calculations

 Disadvantages:
 Not all hosts share the identical state about each entity.
 Protocols are more complex to implement to develop, maintain 

and evaluate.
 Must customize for object behavior to achieve best results.
 Must have convergence to cover prediction errors.
 Collision detection difficult to implement.
 Poor convergence methods lead to jerky movements and distract 

from immersion.



Heartbeats

 Each user periodically sends a message called a 
heartbeat informing everyone of its status.

 Usually every 5 seconds, to keep other players informed 
that a particular object is alive and still in the system (and 
hence should be displayed).

 Entities must have a “heartbeat” otherwise cannot 
distinguish between live entities and ones that have left 
the system.

 Helps recovery from lost messages (to help network 
reliability)

 Helps users who just joined



Real-time Rendering Challenges

 Real-time rendering
 Polygon culling & Level-of-Detail processing

 Real-time collision detection and response
 Who determines collision in a networked virtual environment?

 Computational resource management
 Interaction management



Polygon Culling and LOD Processing

 Try to use available CPU cycles to throw away most of 
our 3D model before we send it through the graphics 
pipeline.

 But we are about to get graphics engines that run 
over 100M polygons per second, some planning 
beyond 300M+ polygons per second, so maybe this 
becomes less of a problem.

 Use a hierarchical data structure for the displayable 
world.

 Create LOD models by hand in our modeling tool, 
throwing away small polygons for the low resolution 
versions of our models.

 Some modeling tools will do LOD semi-automatically. 
They give you a cut at it and you can add polygons 
back in.



 Movement through our CVEs requires that we have 
some way to determine if we have collided with the 
surfaces in our world so that we can stop our 
movement or react to the collision.

 Interactivity in our CVEs requires that we have some 
way of reaching out and touching an object in our VE, 
being able to determine what we touched and then 
being able to react.

 No matter how good the graphics and textures look, 
the poor realism resulting from a lack of collision 
detection breaks the suspension of disbelief.

 Systems targeted toward large-scale, interactive 
simulation environments include I-COLLIDE, RAPID, 
and V-COLLIDE.

Real-time Collision Detection and Response



Computational Resource Management

 Network bandwidth increases as the number of new 
users increases. 
 New users increase amount of shared data and level of 

interaction in the environment. 
 More network bandwidth is required to maintain the data and 

disseminate the interactions.
 As more users enter the CVE, additional processor cycles

are required at each of the existing users’ hosts.
 Since each user introduces new shared state to the CVE, the 

processor must cache this additional state, receive updates to this 
new state, and apply those updates to the cache.

 Because each user introduces additional updates, the processor 
must be prepared to receive and handle the increased volume of 
updates and support increased interactions with the local user.



Computational Resource Management

 Communication protocol optimization
 Reduce packet size and the number of packets
 Packet compression – may be lossless or lossy and can be 

internal or external.
 Aggregation – reducing the number of packets that are 

actually transmitted by merging information from multiple 
packets into a single packet.

 Data flow restriction
 Controlling the visibility of data 
 Data flow management using Area-Of-Interest Management

 Leveraging limited user perception
 Modifying system architecture



Data Visibility

 Resource management for scalability and performance
 The goal is to send information to those hosts who 

really need to receive it
 Individual user needs to know only a small portion of 

the total available information
 Aura-Nimbus approach
 Area-Of-Interest filter



Aura-Nimbus Spatial Model of 
Interaction

 Aura – data should only be 
available to those entities 
that are capable of 
perceiving that information

 Nimbus – data should only 
be available to those who 
are interested in that 
information

 Aura-Nimbus has the 
disadvantage in that it does 
not scale to large numbers 
of entities.

 Each packet has a custom 
set of destination entities –
hard to utilize multicasting

A is fully aware of B

A is not aware of B

A is semi-aware of B



Area of Interest Management (AOIM)
 In the real world, which virtual 

environments emulate, entities 
have a limited “areas of 
interest”.

 Area of Interest filters are 
explicit data filters provided by 
each host, allowing the CVE to 
perform fine-grained data 
management to deliver only 
the information the host needs.

 Or, multicasting network to 
restrict data flow

 Spatial, temporal, functional 
partitioning classes



Area of Interest Management (AOIM)

 Interactions are mediated by 
an AOIM software layer.

 Partition the simulation into 
workable chunks to reduce 
computational load on hosts 
and minimize 
communications on tail links.

 Distribute partitioning 
algorithms among hosts.



Collaboration Challenges

 “Natural, spatial” human-human communication
 Peripheral awareness
 Unification of communication and information
 Large number of participants
 Cooperative interaction



Avatar

 Tracking head and hand 
position and orientation 
give good cues

 Pointing rays can be 
useful in large spaces

 Articulated avatars
 Pointers with static 

photographs attached 
 Video as a window
 Video avatar



Avatar

 CALVIN - simple articulated 
avatars were used in this 
design environment that 
encouraged people to work at 
different scales to set up a 
configurable room.

 NICE - more articulated 
avatars in an educational 
setting, and usage by more 
casual users (issues of being 
able to see yourself, issues of 
'equality', emergent social 
patterns)



Avatar

 TIDE - pointers with static 
photographs attached. One issue 
with pointers (and avatars) is 
knowing who is who. Attaching a 
name to a pointer is one solution 
where you can quickly talk to the 
person with the appropriate 
pointer.

 Virtual Temporal Bone - full body 
avatars would get in the way of 
this educational environment so 
only different colored pointers 
are used showing where the 
user's tracked wand is in the 
space.



Avatar

 Today you can also get yourself scanned in a 3D scanner 
and generate an articulated avatar of yourself

 https://www.youtube.com/watch_popup?v=DYllOiFmwdc



Asynchronous Work - VR Annotator
 Sometimes asynchronous 

collaboration is better.
 VR annotations are 

recordings in VR where both 
the person’s hand and head 
gestures as well as their 
voice is captured. 

 Similar to attaching post-it 
notes to Adobe Acrobat files.

 VR annotations could be 
used to create virtual tour 
guides since the annotations 
are animated.



Some current consumer collaborative 
applications

 Cooperative games
 Black Hat Cooperative
 Keep Talking and Nobody Explodes
 Bridge Crew
 Rec Room

 Social VR
 AltSpaceVR

https://www.youtube.com/watch_popup?v=0I6QNXR0dPY
 Facebook Spaces 

https://www.youtube.com/watch_popup?v=_kGRpSd4vnc
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